Using a randomized experimental design, real-time electronic stove surface temperature measurements and controlled cooking tests, we estimate fuelwood and CO2 savings from an improved cookstove (ICS) program in rural Ethiopia. Cooking uses a majority of the fuelwood in the country and therefore is a critical determinant of greenhouse gas emissions. Estimating fuelwood savings is therefore a key aspect of crediting ICS climate change benefits. Our findings suggest that the Mirt injera stove saves a substantial amount of fuelwood. Using a relatively low estimate of percentage of nonrenewable biomass, on average one Mirt stove avoids the burning of approximately 634 kg of fuelwood per year and sequesters an additional 0.65 tons of CO2, which is about one-third of previous estimates. The U.S. Interagency Working Group (2013) 2015–2019 estimate for the global social cost of carbon of $44.00 per ton implies annual global benefits from reduced fuelwood burning of $28.60 per stove per year, which substantially exceeds the $12.00 initial cost of the stove. As the global benefit is much greater than the cost, which is borne entirely by Ethiopia, international transfers would be warranted to support expansion of Mirt adoption.

Do improved biomass cookstoves reduce fuelwood consumption and carbon emissions? Evidence from a field experiment in rural Ethiopia

Martinsson P.;
2022-01-01

Abstract

Using a randomized experimental design, real-time electronic stove surface temperature measurements and controlled cooking tests, we estimate fuelwood and CO2 savings from an improved cookstove (ICS) program in rural Ethiopia. Cooking uses a majority of the fuelwood in the country and therefore is a critical determinant of greenhouse gas emissions. Estimating fuelwood savings is therefore a key aspect of crediting ICS climate change benefits. Our findings suggest that the Mirt injera stove saves a substantial amount of fuelwood. Using a relatively low estimate of percentage of nonrenewable biomass, on average one Mirt stove avoids the burning of approximately 634 kg of fuelwood per year and sequesters an additional 0.65 tons of CO2, which is about one-third of previous estimates. The U.S. Interagency Working Group (2013) 2015–2019 estimate for the global social cost of carbon of $44.00 per ton implies annual global benefits from reduced fuelwood burning of $28.60 per stove per year, which substantially exceeds the $12.00 initial cost of the stove. As the global benefit is much greater than the cost, which is borne entirely by Ethiopia, international transfers would be warranted to support expansion of Mirt adoption.
2022
198
1
9
Avoided carbon emissions; Controlled cooking test; Ethiopia; Improved biomass cookstoves
Mekonnen A.; Beyene A.; Bluffstone R.; Gebreegziabher Z.; Martinsson P.; Toman M.; Vieider F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/2107511
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 12
  • ???jsp.display-item.citation.isi??? ND
social impact