Gynecological cancers remain a major global health burden due to their high incidence, molecular heterogeneity, and frequent resistance to conventional therapies. Beyond well-established genetic alterations and targeted treatments, growing attention has been directed toward the role of cancer stem cells (CSCs), a rare tumor subpopulation with self-renewal, differentiation, and tumor-initiating capacities. CSCs are sustained by a specialized microenvironment, the cancer stem cell niche, where growth factors, cytokines, hypoxia, and stromal interactions converge to promote stemness, chemoresistance, and metastatic potential. In breast cancer, signaling axes such as EGFR, IGF, TGFβ, and HGF/c-Met critically regulate CSC expansion, particularly in aggressive subtypes like triple-negative tumors. In ovarian cancer, factors including HGF, VEGFA, IGF, and stromal-derived BMPs drive CSC plasticity and contribute to relapse after platinum therapy. Endometrial CSCs are supported by pathways involving TGFβ, BMP2, and Netrin-4/c-Myc signaling, while in cervical cancer, VEGF, IGF-1, Gremlin-1, and TGFβ-mediated circuits enhance stem-like phenotypes and drug resistance. Cytokine-driven inflammation, especially via IL-3, IL-6, IL-8, IL-10, and CCL5, further fosters CSC survival and immune evasion across gynecologic malignancies. Preclinical studies demonstrate that targeting growth factors and cytokine signaling, through monoclonal antibodies, receptor inhibitors, small molecules, or cytokine modulation, can reduce CSC frequency, restore chemosensitivity, and enhance immunotherapy efficacy. This review highlights the interplay between CSCs, growth factors, and cytokines as central to tumor progression and relapses, emphasizing their translational potential as therapeutic targets in precision oncology for gynecological cancers.
Fueling the Seed: Growth Factors and Cytokines Driving Cancer Stem Cells in Gynecological Malignancies
Alessandro SarcinellaCo-first
;Juan Sebastian Guerra VillacisCo-first
;Maria Felice Brizzi
Last
2025-01-01
Abstract
Gynecological cancers remain a major global health burden due to their high incidence, molecular heterogeneity, and frequent resistance to conventional therapies. Beyond well-established genetic alterations and targeted treatments, growing attention has been directed toward the role of cancer stem cells (CSCs), a rare tumor subpopulation with self-renewal, differentiation, and tumor-initiating capacities. CSCs are sustained by a specialized microenvironment, the cancer stem cell niche, where growth factors, cytokines, hypoxia, and stromal interactions converge to promote stemness, chemoresistance, and metastatic potential. In breast cancer, signaling axes such as EGFR, IGF, TGFβ, and HGF/c-Met critically regulate CSC expansion, particularly in aggressive subtypes like triple-negative tumors. In ovarian cancer, factors including HGF, VEGFA, IGF, and stromal-derived BMPs drive CSC plasticity and contribute to relapse after platinum therapy. Endometrial CSCs are supported by pathways involving TGFβ, BMP2, and Netrin-4/c-Myc signaling, while in cervical cancer, VEGF, IGF-1, Gremlin-1, and TGFβ-mediated circuits enhance stem-like phenotypes and drug resistance. Cytokine-driven inflammation, especially via IL-3, IL-6, IL-8, IL-10, and CCL5, further fosters CSC survival and immune evasion across gynecologic malignancies. Preclinical studies demonstrate that targeting growth factors and cytokine signaling, through monoclonal antibodies, receptor inhibitors, small molecules, or cytokine modulation, can reduce CSC frequency, restore chemosensitivity, and enhance immunotherapy efficacy. This review highlights the interplay between CSCs, growth factors, and cytokines as central to tumor progression and relapses, emphasizing their translational potential as therapeutic targets in precision oncology for gynecological cancers.| File | Dimensione | Formato | |
|---|---|---|---|
|
ijms-26-11462.pdf
Accesso aperto
Descrizione: review
Tipo di file:
PDF EDITORIALE
Dimensione
1.28 MB
Formato
Adobe PDF
|
1.28 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



