The design, synthesis, and relaxivity properties of highly soluble TACN-capped trishydroxypyridonate-Gd(III) complexes are presented. Molecular mechanics modeling was used to help design a complex capable of possessing three water molecules in the inner metal coordination sphere, an attractive property for high-relaxivity MRI contrast agents. The measured relaxivities of 13.1 and 12.5 mM(-1) s(-1) (20 MHz, 298 K) for two TACN-capped complexes are among the highest known relaxivities of low-molecular weight Gd complexes and are consistent with three coordinated waters, an extremely fast water exchange rate, and long electronic relaxation time. Luminescence measurements to confirm the number of coordinated water molecules for the first time in the HOPO series are also discussed.
Highly soluble tris-hydroxypyridonate Gd(III) complexes with increased hydration number, fast water exchange, slow electronic relaxation, and high relaxivity
AVEDANO, STEFANO;BOTTA, Mauro;AIME, Silvio;
2007-01-01
Abstract
The design, synthesis, and relaxivity properties of highly soluble TACN-capped trishydroxypyridonate-Gd(III) complexes are presented. Molecular mechanics modeling was used to help design a complex capable of possessing three water molecules in the inner metal coordination sphere, an attractive property for high-relaxivity MRI contrast agents. The measured relaxivities of 13.1 and 12.5 mM(-1) s(-1) (20 MHz, 298 K) for two TACN-capped complexes are among the highest known relaxivities of low-molecular weight Gd complexes and are consistent with three coordinated waters, an extremely fast water exchange rate, and long electronic relaxation time. Luminescence measurements to confirm the number of coordinated water molecules for the first time in the HOPO series are also discussed.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.