Solid-phase microextraction (SPME) is a solvent-free technique, which is well established in headspace analysis since it is sensitive, because of the concentration factor achieved by the fibres, and selective, because of different coating materials which can be used. The performance of eight commercially available SPME fibres was compared to evaluate the recoveries of some characteristic components with different polarities and structures present in the headspace of four aromatic and medicinal plants: rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), thyme (Thymus vulgaris L.) and valerian (Valeriana officinalis L.). The relative concentration capacity of each fibre on the same components of each plant was also determined by comparing their abundance with that obtained by classical static-headspace GC. The partition coefficient, K1, between the headspace gaseous phase and SPME polymeric coating, and the relative concentration factors, of some of the characteristic components of the plant investigated dissolved in dibutyl phtalate, were also determined, under rigorously standardised analysis conditions. The results showed that the most effective fibres were those consisting of two components, i.e., a liquid phase (polydimethylsiloxane) and a porous solid (carboxen or divinylbenzene, or both).

Influence of fibre coating in headspace solid-phase microextraction–gas chromatographic analysis of aromatic and medicinal plants

BICCHI, Carlo;RUBIOLO, Patrizia
2000-01-01

Abstract

Solid-phase microextraction (SPME) is a solvent-free technique, which is well established in headspace analysis since it is sensitive, because of the concentration factor achieved by the fibres, and selective, because of different coating materials which can be used. The performance of eight commercially available SPME fibres was compared to evaluate the recoveries of some characteristic components with different polarities and structures present in the headspace of four aromatic and medicinal plants: rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), thyme (Thymus vulgaris L.) and valerian (Valeriana officinalis L.). The relative concentration capacity of each fibre on the same components of each plant was also determined by comparing their abundance with that obtained by classical static-headspace GC. The partition coefficient, K1, between the headspace gaseous phase and SPME polymeric coating, and the relative concentration factors, of some of the characteristic components of the plant investigated dissolved in dibutyl phtalate, were also determined, under rigorously standardised analysis conditions. The results showed that the most effective fibres were those consisting of two components, i.e., a liquid phase (polydimethylsiloxane) and a porous solid (carboxen or divinylbenzene, or both).
2000
892
469
485
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TG8-4177HG6-13&_user=525216&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000026382&_version=1&_urlVersion=0&_userid=525216&md5=e0bc18f6ec81191c9341fbae157877ae
C. BICCHI; S. DRIGO; P. RUBIOLO
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/22964
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact