We show that the complete intersection V = V (2, 3) of a quadric and a cubic in 5-dimensional projective space defined over a field k, of char. different from 2 and 3, is unirational over this field k itself if moreover V has a point p rational over k and if one of the two planes through p on the quadric is also rational over k.
On the k-Unirationality of the Cubic Complex
CONTE, Alberto;MARCHISIO, Marina;
2007-01-01
Abstract
We show that the complete intersection V = V (2, 3) of a quadric and a cubic in 5-dimensional projective space defined over a field k, of char. different from 2 and 3, is unirational over this field k itself if moreover V has a point p rational over k and if one of the two planes through p on the quadric is also rational over k.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
411-758-1-PB.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
245.06 kB
Formato
Adobe PDF
|
245.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.