Human placental development involves coordinated angiogenesis and trophoblast outgrowth that are compromised in intrauterine growth restriction (IUGR). As Tie-2((-/-)) mice exhibit growth retardation and vascular network malformation, the expression of Tie-2 and its ligands, angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), were investigated in human placenta from normal pregnancies and those complicated by severe IUGR. Ribonucleotide protection assays showed no significant change in the expression of Ang-2 mRNA between gestationally matched normal and IUGR placentas; however, immunoblots revealed that Ang-2 protein was significantly decreased in IUGR, suggesting that this may contribute to the abnormal development of the villous vasculature. In situ hybridization studies showed that Ang-1 and Tie-2 were detected in the cyto/syncytiotrophoblast bilayer in first-trimester placenta, whereas Ang-2 mRNA was restricted to the cytotrophoblast, suggesting their role in trophoblast function. At term, Ang-1 mRNA and immunoreactive protein were restricted to the paravascular tissues of the primary stem villi, supporting its role in vessel maturation. In contrast, Ang-2 was expressed throughout the term villous core, perhaps to permit the developing placental vascular network to remain in a state of fluidity. As these studies also revealed that trophoblast, in addition to endothelial cells, expressed Tie-2 receptors, we investigated the potential role of Ang-1/Ang-2 on trophoblast proliferation, migration, and the release of NO. Using spontaneously transformed first-trimester trophoblast cell lines that exhibit cytotrophoblast-like (ED(27)) and extravillous trophoblast-like (ED(77)) properties, we show that the addition of Ang-2 (250 ng/ml) stimulated DNA synthesis in ED(27) trophoblast cells and triggered the release of NO. Ang-1 stimulated trophoblast (ED(77)) migration in a dose-dependent manner that was inhibited by recombinant Tie-2-FC. These data thus imply, for the first time, a specific role for angiopoietins as regulators of trophoblast behavior in the development of the utero/fetoplacental circulation, an action independent of their well-established roles in vascular endothelium.
Angiopoietin-1 and angiopoietin-2 activate trophoblast Tie-2 to promote growth and migration during placental development.
BUSSOLATI, Benedetta;
2000-01-01
Abstract
Human placental development involves coordinated angiogenesis and trophoblast outgrowth that are compromised in intrauterine growth restriction (IUGR). As Tie-2((-/-)) mice exhibit growth retardation and vascular network malformation, the expression of Tie-2 and its ligands, angiopoietin-1 (Ang-1) and angiopoietin-2 (Ang-2), were investigated in human placenta from normal pregnancies and those complicated by severe IUGR. Ribonucleotide protection assays showed no significant change in the expression of Ang-2 mRNA between gestationally matched normal and IUGR placentas; however, immunoblots revealed that Ang-2 protein was significantly decreased in IUGR, suggesting that this may contribute to the abnormal development of the villous vasculature. In situ hybridization studies showed that Ang-1 and Tie-2 were detected in the cyto/syncytiotrophoblast bilayer in first-trimester placenta, whereas Ang-2 mRNA was restricted to the cytotrophoblast, suggesting their role in trophoblast function. At term, Ang-1 mRNA and immunoreactive protein were restricted to the paravascular tissues of the primary stem villi, supporting its role in vessel maturation. In contrast, Ang-2 was expressed throughout the term villous core, perhaps to permit the developing placental vascular network to remain in a state of fluidity. As these studies also revealed that trophoblast, in addition to endothelial cells, expressed Tie-2 receptors, we investigated the potential role of Ang-1/Ang-2 on trophoblast proliferation, migration, and the release of NO. Using spontaneously transformed first-trimester trophoblast cell lines that exhibit cytotrophoblast-like (ED(27)) and extravillous trophoblast-like (ED(77)) properties, we show that the addition of Ang-2 (250 ng/ml) stimulated DNA synthesis in ED(27) trophoblast cells and triggered the release of NO. Ang-1 stimulated trophoblast (ED(77)) migration in a dose-dependent manner that was inhibited by recombinant Tie-2-FC. These data thus imply, for the first time, a specific role for angiopoietins as regulators of trophoblast behavior in the development of the utero/fetoplacental circulation, an action independent of their well-established roles in vascular endothelium.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.