The human hemopexin gene was isolated and its structure determined. The gene spans approximately 12 kb and is interrupted by nine introns. When the intron/exon pattern was examined with respect to the polypeptide segments they encode, a direct correspondence between exons and the 10 repeating units in the protein was observed. The introns are not randomly placed; they fall in the middle of the region of amino acid sequence homology in strikingly similar locations in 6 of the 10 units and in a symmetrical position in the two halves of the coding sequence. These features strongly support the hypothesis that the gene evolved through intron-mediated duplications of a primordial sequence to a five-exon cluster. A more recent gene duplication led to the present-day gene organization.
Structure of the human hemopexin gene and evidence for intron-mediated evolution.
ALTRUDA, Fiorella;POLI, Valeria;SILENGO, Lorenzo
1988-01-01
Abstract
The human hemopexin gene was isolated and its structure determined. The gene spans approximately 12 kb and is interrupted by nine introns. When the intron/exon pattern was examined with respect to the polypeptide segments they encode, a direct correspondence between exons and the 10 repeating units in the protein was observed. The introns are not randomly placed; they fall in the middle of the region of amino acid sequence homology in strikingly similar locations in 6 of the 10 units and in a symmetrical position in the two halves of the coding sequence. These features strongly support the hypothesis that the gene evolved through intron-mediated duplications of a primordial sequence to a five-exon cluster. A more recent gene duplication led to the present-day gene organization.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.