BACKGROUND: Cytokines released by activated T lymphocytes are key regulators of chronic inflammatory response, including atherosclerosis. The aim of this study was to investigate the presence of interleukin-3 (IL-3) in lymphocytes infiltrating the atherosclerotic plaque and the effect of this cytokine on primary vascular smooth muscle cells (SMCs). METHODS AND RESULTS: Twenty atherosclerotic carotid arterial specimens and 5 early atherosclerotic lesions from the internal carotid were manually minced to fragments, and T lymphocytes infiltrating the atherosclerotic plaque were isolated on solid-phase anti-CD3 polystyrene plates. Southern blot analysis demonstrated that in all samples, lymphocytes expressed IL-3 and IL-2 receptor alpha-chain transcripts, indicating that in this context, the activated T lymphocytes may release IL-3. We further analyzed the expression of the IL-3 receptor and the biological effects exerted by the ligand on vascular SMCs. ss-IL-3-transducing subunit was detected both on cultured SMCs and on endothelial cells and SMCs within atheroma. The analysis of the IL-3-induced biological effects demonstrated that it was able to trigger both mitogenic and motogenic signals. Moreover, we demonstrated that the addition of PD98059, a known inhibitor of the MAP-extracellular signaling-regulated/MAP kinase pathway, completely inhibited IL-3-mediated MAP kinase activation and IL-3-induced migration and proliferation. Finally, IL-3 was found to stimulate vascular endothelial growth factor (VEGF) gene transcription. CONCLUSIONS: IL-3, expressed by activated T lymphocytes infiltrating early and advanced atherosclerotic plaques, may sustain the atherosclerotic process either directly, by activating SMC migration and proliferation, or indirectly, via VEGF production.
Interleukin-3 stimulates migration and proliferation of vascular smooth muscle cells: a potential role in atherogenesis
BRIZZI, Maria Felice;DENTELLI, Patrizia;ROSSO, Arturo;GARBARINO, Giovanni;CAMUSSI, Giovanni;PEGORARO, Luigi
2001-01-01
Abstract
BACKGROUND: Cytokines released by activated T lymphocytes are key regulators of chronic inflammatory response, including atherosclerosis. The aim of this study was to investigate the presence of interleukin-3 (IL-3) in lymphocytes infiltrating the atherosclerotic plaque and the effect of this cytokine on primary vascular smooth muscle cells (SMCs). METHODS AND RESULTS: Twenty atherosclerotic carotid arterial specimens and 5 early atherosclerotic lesions from the internal carotid were manually minced to fragments, and T lymphocytes infiltrating the atherosclerotic plaque were isolated on solid-phase anti-CD3 polystyrene plates. Southern blot analysis demonstrated that in all samples, lymphocytes expressed IL-3 and IL-2 receptor alpha-chain transcripts, indicating that in this context, the activated T lymphocytes may release IL-3. We further analyzed the expression of the IL-3 receptor and the biological effects exerted by the ligand on vascular SMCs. ss-IL-3-transducing subunit was detected both on cultured SMCs and on endothelial cells and SMCs within atheroma. The analysis of the IL-3-induced biological effects demonstrated that it was able to trigger both mitogenic and motogenic signals. Moreover, we demonstrated that the addition of PD98059, a known inhibitor of the MAP-extracellular signaling-regulated/MAP kinase pathway, completely inhibited IL-3-mediated MAP kinase activation and IL-3-induced migration and proliferation. Finally, IL-3 was found to stimulate vascular endothelial growth factor (VEGF) gene transcription. CONCLUSIONS: IL-3, expressed by activated T lymphocytes infiltrating early and advanced atherosclerotic plaques, may sustain the atherosclerotic process either directly, by activating SMC migration and proliferation, or indirectly, via VEGF production.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.