Indirect evidence using nitric oxide (NO) synthase (NOS) inhibitors suggests that in guinea-pig airways bradykinin releases bronchoprotective NO. In this study, using a recently developed electrochemical method of NO measurement based on a porphyrinic microsensor, we investigated whether bradykinin releases NO from guinea-pig airways and whether the epithelium is the main source of NO. Further, the Ca(2+)-dependence of bradykinin-induced NO release was assessed stimulating airway preparations with bradykinin in Ca(2+)-free conditions. We also studied the immunohistochemical distribution of the Ca(2+)- dependent constitutive isoforms of NOS (constitutive NOS [cNOS]: neuronal and endothelial [ecNOS]) in our preparations. The porphyrinic microsensor was placed in the bathing fluid onto the mucosal surface of tracheal or main bronchial segments. Addition of bradykinin vehicle (0.9% saline) did not cause any detectable change of the baseline signal. Addition of bradykinin caused an upward shift of the baseline that reached a maximum within 1 to 2 s. The amplitude of the response to bradykinin was concentration-dependent between the range 1 nM to 10 microM, with a maximum effect at 10 microM. Bradykinin-induced NO release was higher in tracheal than in main bronchial segments. The selective bradykinin B(2) receptor antagonist D-Arg(0)-[Hyp(3), Thi(5), D-Tic(7), Oic(8)]bradykinin (1 microM) inhibited NO release induced by a submaximum concentration of bradykinin (1 microM). The ability of bradykinin to release NO was markedly reduced in epithelium-denuded segments, and abolished in Ca(2+)-free conditions and after pretreatment with N(G)-monomethyl-L-arginine (100 microM), but not with N(G)-monomethyl-D-arginine. Both cNOS isoforms were present in trachea and main bronchi, ecNOS being the predominant isoform in the epithelium. The study shows that bradykinin via B(2) receptor activation caused a rapid and Ca(2+)-dependent release of NO, mainly, but not exclusively, derived from the epithelium. It also shows that both cNOS isoforms may be involved in bradykinin-evoked NO release.

Detection of nitric oxide release induced by bradykinin in guinea pig trachea and main bronchi using a porphyrinic microsensor.

RICCIARDOLO, Fabio Luigi Massimo;
2000

Abstract

Indirect evidence using nitric oxide (NO) synthase (NOS) inhibitors suggests that in guinea-pig airways bradykinin releases bronchoprotective NO. In this study, using a recently developed electrochemical method of NO measurement based on a porphyrinic microsensor, we investigated whether bradykinin releases NO from guinea-pig airways and whether the epithelium is the main source of NO. Further, the Ca(2+)-dependence of bradykinin-induced NO release was assessed stimulating airway preparations with bradykinin in Ca(2+)-free conditions. We also studied the immunohistochemical distribution of the Ca(2+)- dependent constitutive isoforms of NOS (constitutive NOS [cNOS]: neuronal and endothelial [ecNOS]) in our preparations. The porphyrinic microsensor was placed in the bathing fluid onto the mucosal surface of tracheal or main bronchial segments. Addition of bradykinin vehicle (0.9% saline) did not cause any detectable change of the baseline signal. Addition of bradykinin caused an upward shift of the baseline that reached a maximum within 1 to 2 s. The amplitude of the response to bradykinin was concentration-dependent between the range 1 nM to 10 microM, with a maximum effect at 10 microM. Bradykinin-induced NO release was higher in tracheal than in main bronchial segments. The selective bradykinin B(2) receptor antagonist D-Arg(0)-[Hyp(3), Thi(5), D-Tic(7), Oic(8)]bradykinin (1 microM) inhibited NO release induced by a submaximum concentration of bradykinin (1 microM). The ability of bradykinin to release NO was markedly reduced in epithelium-denuded segments, and abolished in Ca(2+)-free conditions and after pretreatment with N(G)-monomethyl-L-arginine (100 microM), but not with N(G)-monomethyl-D-arginine. Both cNOS isoforms were present in trachea and main bronchi, ecNOS being the predominant isoform in the epithelium. The study shows that bradykinin via B(2) receptor activation caused a rapid and Ca(2+)-dependent release of NO, mainly, but not exclusively, derived from the epithelium. It also shows that both cNOS isoforms may be involved in bradykinin-evoked NO release.
22
97
104
F. RICCIARDOLO; L. VERGNANI; S. WIEGAND; F. RICCI; N. MANZOLI; A. FISCHER; S. AMADESI; R. FELLIN; P. GEPPETTI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/35179
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 31
  • ???jsp.display-item.citation.isi??? 29
social impact