Cortistatin (CST), a neuropeptide with high structural homology with somatostatin (SST), binds all SST receptor (SST-R) subtypes but, unlike SST, also shows high binding affinity to ghrelin receptor (GHS-R1a). CST exerts the same endocrine activities of SST in humans, suggesting that the activation of the SST-R might mask the potential interaction with ghrelin system. CST-8, a synthetic CST-analogue devoid of any binding affinity to SST-R but capable to bind the GHS-R1a, has been reported able to exert antagonistic effects on ghrelin actions either in vitro or in vivo in animals. We studied the effects of CST-8 (2.0 microg/kg i.v. as a bolus or 2.0 microg/kg/h i.v. as infusion) on both spontaneous and ghrelin- or hexarelin- (1.0 microg/kg i.v. as bolus) stimulated GH, PRL, ACTH and cortisol secretion in 6 normal volunteers. During saline, no change occurred in GH and PRL levels while a spontaneous ACTH and cortisol decrease was observed. As expected, both ghrelin and hexarelin stimulated GH, PRL, ACTH and cortisol secretion (p<0.05). CST-8, administered either as bolus or as continuous infusion, did not modify both spontaneous and ghrelin- or hexarelin-stimulated GH, PRL, ACTH and cortisol secretion. In conclusion, CST-8 seems devoid of any modulatory action on either spontaneous or ghrelin-stimulated somatotroph, lactotroph and corticotroph secretion in humans in vivo. These negative results do not per se exclude that, even at these doses, CST-8 might have some neuroendocrine effects after prolonged treatment or that, at higher doses, may be able to effectively antagonize ghrelin action in humans. However, these data strongly suggest that CST-8 is not a promising candidate as GHS-R1a antagonist for human studies to explore the functional interaction between ghrelin and cortistatin systems.

Cortistatin-8, a synthetic cortistatin-derived ghrelin receptor ligand, does not modify the endocrine responses to acylated ghrelin or hexarelin in humans

BENSO, Andrea Silvio;MUCCIOLI, Giampiero;GHIGO, Ezio;BROGLIO, Fabio
2008-01-01

Abstract

Cortistatin (CST), a neuropeptide with high structural homology with somatostatin (SST), binds all SST receptor (SST-R) subtypes but, unlike SST, also shows high binding affinity to ghrelin receptor (GHS-R1a). CST exerts the same endocrine activities of SST in humans, suggesting that the activation of the SST-R might mask the potential interaction with ghrelin system. CST-8, a synthetic CST-analogue devoid of any binding affinity to SST-R but capable to bind the GHS-R1a, has been reported able to exert antagonistic effects on ghrelin actions either in vitro or in vivo in animals. We studied the effects of CST-8 (2.0 microg/kg i.v. as a bolus or 2.0 microg/kg/h i.v. as infusion) on both spontaneous and ghrelin- or hexarelin- (1.0 microg/kg i.v. as bolus) stimulated GH, PRL, ACTH and cortisol secretion in 6 normal volunteers. During saline, no change occurred in GH and PRL levels while a spontaneous ACTH and cortisol decrease was observed. As expected, both ghrelin and hexarelin stimulated GH, PRL, ACTH and cortisol secretion (p<0.05). CST-8, administered either as bolus or as continuous infusion, did not modify both spontaneous and ghrelin- or hexarelin-stimulated GH, PRL, ACTH and cortisol secretion. In conclusion, CST-8 seems devoid of any modulatory action on either spontaneous or ghrelin-stimulated somatotroph, lactotroph and corticotroph secretion in humans in vivo. These negative results do not per se exclude that, even at these doses, CST-8 might have some neuroendocrine effects after prolonged treatment or that, at higher doses, may be able to effectively antagonize ghrelin action in humans. However, these data strongly suggest that CST-8 is not a promising candidate as GHS-R1a antagonist for human studies to explore the functional interaction between ghrelin and cortistatin systems.
2008
42
89
93
PRODAM F; BENSO A; GRAMAGLIA E; LUCATELLO B; RIGANTI F; VAN DER LELY AJ; DEGHENGHI R; MUCCIOLI G; GHIGO E; BROGLIO F
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/35713
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact