The nature of electron traps at the surface of polycrystalline MgO is analyzed for the first time in terms of interaction of the electron spin with the nuclear spin of the O-17 anions of the surface. MgO crystals enriched in the O-17 isotope have been prepared and the corresponding hyperfine coupling constants have been measured in EPR spectra. The trapped electrons are produced by exposure of the samples to H-2 followed by UV irradiation, with consequent production of paramagnetic (H+)(e(-)) centers. The EPR spectrum shows a multiplet structure with two main sextets separated by 51 and 10 G, respectively, due to the interaction of the unpaired electron with two nonequivalent O-17 nuclei. The results are interpreted based on accurate quantum chemical calculations. It is suggested that the paramagnetic centers observed correspond to (H+)(e(-)) pairs formed at step sites of the MgO surface.

Local environment of electrons trapped at the MgO surface: Spin density on the oxygen ions from O-17 hyperfine coupling constants

CHIESA, Mario;GIAMELLO, Elio;
2004-01-01

Abstract

The nature of electron traps at the surface of polycrystalline MgO is analyzed for the first time in terms of interaction of the electron spin with the nuclear spin of the O-17 anions of the surface. MgO crystals enriched in the O-17 isotope have been prepared and the corresponding hyperfine coupling constants have been measured in EPR spectra. The trapped electrons are produced by exposure of the samples to H-2 followed by UV irradiation, with consequent production of paramagnetic (H+)(e(-)) centers. The EPR spectrum shows a multiplet structure with two main sextets separated by 51 and 10 G, respectively, due to the interaction of the unpaired electron with two nonequivalent O-17 nuclei. The results are interpreted based on accurate quantum chemical calculations. It is suggested that the paramagnetic centers observed correspond to (H+)(e(-)) pairs formed at step sites of the MgO surface.
2004
108
11529
11534
MOLECULAR-ORBITAL METHODS; COLOR-CENTERS; H-2 CHEMISORPTION; OXIDE; EPR
M. CHIESA; P. MARTINO; E. GIAMELLO; C. DI VALENTIN; A. DEL VITTO; G. PACCHIONI
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/36614
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 22
social impact