In this study we present data supporting that most CD38 is pre-assembled in a subset of Brij 98-resistant raft vesicles, which were stable at 37 degrees C, and have relatively high levels of Lck and the CD3-zeta subunit of T cell antigen receptor-CD3 complex in contrast with a Brij 98-soluble pool, where CD38 is associated with CD3-zeta, and Lck is not detected. Our data further indicate that following CD38 engagement, LAT and Lck are tyrosine phosphorylated exclusively in Brij 98-resistant rafts, and some key signaling components translocate into rafts (i.e. Sos and p85-phosphatidylinositol 3-kinase). Moreover, N-Ras results activated within rafts immediately upon CD38 ligation, whereas activated Erk was mainly found in soluble fractions with delayed kinetics respective to Ras activation. Furthermore, full phosphorylation of CD3-zeta and CD3-epsilon only occurs in rafts, whereas partial CD3-zeta tyrosine phosphorylation occurs exclusively in the soluble pool, which correlated with increased levels of c-Cbl tyrosine phosphorylation in the non-raft fractions. Taken together, these results suggest that, unlike the non-raft pool, CD38 in rafts is able to initiate and propagate several activating signaling pathways, possibly by facilitating critical associations within other raft subsets, for example, LAT rafts via its capacity to interact with Lck and CD3-zeta. Overall, these findings provide the first evidence that CD38 operates in two functionally distinct microdomains of the plasma membrane.
CD38 signaling in T cells is initiated within a subset of membrane rafts containing Lck and the CD3-zeta subunit of the T cell antigen receptor.
MALAVASI, Fabio;
2003-01-01
Abstract
In this study we present data supporting that most CD38 is pre-assembled in a subset of Brij 98-resistant raft vesicles, which were stable at 37 degrees C, and have relatively high levels of Lck and the CD3-zeta subunit of T cell antigen receptor-CD3 complex in contrast with a Brij 98-soluble pool, where CD38 is associated with CD3-zeta, and Lck is not detected. Our data further indicate that following CD38 engagement, LAT and Lck are tyrosine phosphorylated exclusively in Brij 98-resistant rafts, and some key signaling components translocate into rafts (i.e. Sos and p85-phosphatidylinositol 3-kinase). Moreover, N-Ras results activated within rafts immediately upon CD38 ligation, whereas activated Erk was mainly found in soluble fractions with delayed kinetics respective to Ras activation. Furthermore, full phosphorylation of CD3-zeta and CD3-epsilon only occurs in rafts, whereas partial CD3-zeta tyrosine phosphorylation occurs exclusively in the soluble pool, which correlated with increased levels of c-Cbl tyrosine phosphorylation in the non-raft fractions. Taken together, these results suggest that, unlike the non-raft pool, CD38 in rafts is able to initiate and propagate several activating signaling pathways, possibly by facilitating critical associations within other raft subsets, for example, LAT rafts via its capacity to interact with Lck and CD3-zeta. Overall, these findings provide the first evidence that CD38 operates in two functionally distinct microdomains of the plasma membrane.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.