The aim of this study was to develop both a physical and a chemical protection of the anticancer drug gemcitabine, which suffers from a rapid plasmatic metabolization. For this purpose, we used a series of lipophilic derivatives of gemacitabine in which an acyl chain is covalently coupled to the 4-amino group of gemcitabine; moreover, a physical protection of the drug was attempted by incorporating these lipophilic derivatives into poly(H(2)NPEGCA-co-HDCA) nanospheres and nanocapsules. Nanoparticles were prepared by nanoprecipitation of the poly(H(2)NPEGCA-co-HDCA) copolymer and their size, zeta potential and encapsulation efficiency were further characterized. These results have been relied on lipophilicity and flexibility studies. Data showed that only the more lipophilic derivative, 4-(N)-stearoylgemcitabine, was incorporated with a high yield. Thus, 4-(N)-stearoylgemcitabine-containing nanospheres and nanocapsules were further analyzed by differential scanning calorimetry. Their cytotoxicity was tested on two human cancer cell lines and compared to that of gemcitabine and free 4-(N)-stearoylgemcitabine.

Encapsulation of gemcitabine lipophilic derivatives into polycyanoacrylate nanospheres and nanocapsules

STELLA, Barbara;ARPICCO, Silvia Maria;ROCCO, Flavio;CATTEL, Luigi;
2007-01-01

Abstract

The aim of this study was to develop both a physical and a chemical protection of the anticancer drug gemcitabine, which suffers from a rapid plasmatic metabolization. For this purpose, we used a series of lipophilic derivatives of gemacitabine in which an acyl chain is covalently coupled to the 4-amino group of gemcitabine; moreover, a physical protection of the drug was attempted by incorporating these lipophilic derivatives into poly(H(2)NPEGCA-co-HDCA) nanospheres and nanocapsules. Nanoparticles were prepared by nanoprecipitation of the poly(H(2)NPEGCA-co-HDCA) copolymer and their size, zeta potential and encapsulation efficiency were further characterized. These results have been relied on lipophilicity and flexibility studies. Data showed that only the more lipophilic derivative, 4-(N)-stearoylgemcitabine, was incorporated with a high yield. Thus, 4-(N)-stearoylgemcitabine-containing nanospheres and nanocapsules were further analyzed by differential scanning calorimetry. Their cytotoxicity was tested on two human cancer cell lines and compared to that of gemcitabine and free 4-(N)-stearoylgemcitabine.
2007
344
71
77
Polycyanoacrylate; nanospheres; nanocapsules; gemcitabine; cytotoxicity
STELLA B; ARPICCO S; ROCCO F; MARSAUD V; RENOIR JM; CATTEL L; COUVREUR P
File in questo prodotto:
File Dimensione Formato  
2007 Stella IJP.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 386.02 kB
Formato Adobe PDF
386.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/37200
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 97
  • ???jsp.display-item.citation.isi??? 88
social impact