We have studied the interaction of K atoms with the surface of polycrystalline alkaline-earth metal oxides (MgO, CaC, SrO) by means of CW- and Pulsed-EPR, UV-Vis-NIR spectroscopies and DFT cluster model calculations. The K adsorption site is proposed to be an anionic reverse corner formed at the intersection of two steps, where K binds by more than 1 eV, resulting in thermally stable species up to about 100 K. The bonding has small covalent and large polarization contributions, and the K atom remains neutral, With one unpaired electron in the valence shell. The interaction results in strong modifications of the K electronic wave function which are directly reflected by the hyperfine coupling constant, (K)a(iso). This is found to be a very efficient "probe" to measure the degree of metal-oxide interaction which directly depends on the Substrate basicity. These results provide an original and general model of the early stages of the metal-support interaction in the case of ionic oxides.
Nature of the chemical bond between metal atoms and oxide surfaces: new evidence from spin density studies of K atoms on alkaline earth oxides
CHIESA, Mario;GIAMELLO, Elio;
2005-01-01
Abstract
We have studied the interaction of K atoms with the surface of polycrystalline alkaline-earth metal oxides (MgO, CaC, SrO) by means of CW- and Pulsed-EPR, UV-Vis-NIR spectroscopies and DFT cluster model calculations. The K adsorption site is proposed to be an anionic reverse corner formed at the intersection of two steps, where K binds by more than 1 eV, resulting in thermally stable species up to about 100 K. The bonding has small covalent and large polarization contributions, and the K atom remains neutral, With one unpaired electron in the valence shell. The interaction results in strong modifications of the K electronic wave function which are directly reflected by the hyperfine coupling constant, (K)a(iso). This is found to be a very efficient "probe" to measure the degree of metal-oxide interaction which directly depends on the Substrate basicity. These results provide an original and general model of the early stages of the metal-support interaction in the case of ionic oxides.File | Dimensione | Formato | |
---|---|---|---|
2005JACS_KMgO_Chiesa.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
210.64 kB
Formato
Adobe PDF
|
210.64 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.