Phosphoinositide 3-kinases (PI3Ks) are important regulators of cell migration. The PI3K isoform gamma is primarily expressed in haematopoietic cells, and is activated by G protein-coupled receptors (GPCRs). Here, we investigate the contribution of PI3Kgamma to macrophage responses to chemoattractants, using bone marrow-derived macrophages from wild-type and PI3Kgamma-null mice. We observe that early membrane ruffling induced by MCP-1, which activates a GPCR, or by CSF-1, which activates a tyrosine kinase receptor, is unaltered in PI3Kgamma(-/-) mice, although by 30 min MCP-1-induced cell polarization was strongly reduced in PI3Kgamma(-/-) compared to wild-type macrophages. The migration behaviour of the macrophages was analysed by time-lapse microscopy in Dunn chemotaxis chambers. PI3Kgamma(-/-) macrophages showed reduced migration speed and translocation, and no chemotaxis to MCP-1. Interestingly, there was also a reduction in migration efficiency in PI3Kgamma(-/-) macrophages stimulated with CSF-1 although early CSF-1R signalling was normal. These results indicate that the initial actin reorganization induced by either a GPCR or tyrosine kinase receptor agonist is not dependent on PI3Kgamma, whereas PI3Kgamma is needed for optimal migration of macrophages to either agonist.

Requirement for PI 3-kinase gamma in macrophage migration to MCP-1 and CSF-1. / JONES G.E.; PRIGMORE E.; DUNN G.A.; E. HIRSCH; WYMANN M.P.; RIDLEY A.J.. - In: EXPERIMENTAL CELL RESEARCH. - ISSN 0014-4827. - STAMPA. - 290(2003), pp. 120-131.

Requirement for PI 3-kinase gamma in macrophage migration to MCP-1 and CSF-1.

HIRSCH, Emilio;
2003

Abstract

Phosphoinositide 3-kinases (PI3Ks) are important regulators of cell migration. The PI3K isoform gamma is primarily expressed in haematopoietic cells, and is activated by G protein-coupled receptors (GPCRs). Here, we investigate the contribution of PI3Kgamma to macrophage responses to chemoattractants, using bone marrow-derived macrophages from wild-type and PI3Kgamma-null mice. We observe that early membrane ruffling induced by MCP-1, which activates a GPCR, or by CSF-1, which activates a tyrosine kinase receptor, is unaltered in PI3Kgamma(-/-) mice, although by 30 min MCP-1-induced cell polarization was strongly reduced in PI3Kgamma(-/-) compared to wild-type macrophages. The migration behaviour of the macrophages was analysed by time-lapse microscopy in Dunn chemotaxis chambers. PI3Kgamma(-/-) macrophages showed reduced migration speed and translocation, and no chemotaxis to MCP-1. Interestingly, there was also a reduction in migration efficiency in PI3Kgamma(-/-) macrophages stimulated with CSF-1 although early CSF-1R signalling was normal. These results indicate that the initial actin reorganization induced by either a GPCR or tyrosine kinase receptor agonist is not dependent on PI3Kgamma, whereas PI3Kgamma is needed for optimal migration of macrophages to either agonist.
290
120
131
JONES G.E.; PRIGMORE E.; DUNN G.A.; E. HIRSCH; WYMANN M.P.; RIDLEY A.J.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/37688
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact