We report on the characterization of an isomorphously substituted Fe-MCM-22 sample containing both Fe and Al in framework positions (Si/Fe ) 44, Si/Al ) 25). XANES spectroscopy was used to study the evolution of Fe sites as a consequence of thermal activation at high temperature (1073 K) and subsequent oxidation with N2O. The results were compared to those obtained in the same conditions on a well-known Fe-silicalite sample (Si/Fe ) 68, Si/Al ) ¥). In both samples, thermal activation causes migration of a fraction of Fe ions from framework to extraframework positions, this migration being accompanied by a reduction of Fe3+ to Fe2+. Upon oxidation with N2O at 523 K, the two samples show a different behavior. While in Fe-silicalite practically all of the Fe2+ sites formed by thermal activation are reoxidized to Fe3+, in Fe-MCM-22 only a fraction of the extraframework iron sites is involved in the reoxidation process. The accessibility of the extraframework Fe sites was also investigated by using the NO molecule as a surface probe. Upon NO dosage on the sample, the modification of the pre-edge peak and of the edge position suggests an important charge release from the extraframework Fe2+ ions to the adsorbed molecules. This could be formalized with the formation of Fe3+(NO-) complexes, compatible (on the basis of the simple molecular orbital theory) with a bent NO geometry. The formation of a complex family of Fe2+ mono-, di-, and trinitrosyl complexes was also confirmed by FTIR spectroscopy. Similarly to what was observed in the oxidation experiments, the fraction of extraframework Fe sites able to interact with NO in Fe-MCM-22 sample is smaller than that in Fe-silicalite treated in the same conditions. This trend is explained with a major clustering of extraframework Fe sites in Fe-MCM-22 sample, as was also suggested by FTIR experiments. These results suggest that the dispersion of iron in zeolitic matrixes prepared by isomorphous substitution could also depend on the zeolitic structure.

Behavior of extraframework Fe sites in MFI and MCM-22 zeolites upon interaction with N2O and NO

BERLIER, Gloria;BORDIGA, Silvia;LAMBERTI, Carlo;ZECCHINA, Adriano
2005-01-01

Abstract

We report on the characterization of an isomorphously substituted Fe-MCM-22 sample containing both Fe and Al in framework positions (Si/Fe ) 44, Si/Al ) 25). XANES spectroscopy was used to study the evolution of Fe sites as a consequence of thermal activation at high temperature (1073 K) and subsequent oxidation with N2O. The results were compared to those obtained in the same conditions on a well-known Fe-silicalite sample (Si/Fe ) 68, Si/Al ) ¥). In both samples, thermal activation causes migration of a fraction of Fe ions from framework to extraframework positions, this migration being accompanied by a reduction of Fe3+ to Fe2+. Upon oxidation with N2O at 523 K, the two samples show a different behavior. While in Fe-silicalite practically all of the Fe2+ sites formed by thermal activation are reoxidized to Fe3+, in Fe-MCM-22 only a fraction of the extraframework iron sites is involved in the reoxidation process. The accessibility of the extraframework Fe sites was also investigated by using the NO molecule as a surface probe. Upon NO dosage on the sample, the modification of the pre-edge peak and of the edge position suggests an important charge release from the extraframework Fe2+ ions to the adsorbed molecules. This could be formalized with the formation of Fe3+(NO-) complexes, compatible (on the basis of the simple molecular orbital theory) with a bent NO geometry. The formation of a complex family of Fe2+ mono-, di-, and trinitrosyl complexes was also confirmed by FTIR spectroscopy. Similarly to what was observed in the oxidation experiments, the fraction of extraframework Fe sites able to interact with NO in Fe-MCM-22 sample is smaller than that in Fe-silicalite treated in the same conditions. This trend is explained with a major clustering of extraframework Fe sites in Fe-MCM-22 sample, as was also suggested by FTIR experiments. These results suggest that the dispersion of iron in zeolitic matrixes prepared by isomorphous substitution could also depend on the zeolitic structure.
2005
109(47)
22377
22385
G. BERLIER; C. PRESTIPINO; M. RIVALLAN; S. BORDIGA; C. LAMBERTI; A. ZECCHINA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/37749
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 22
social impact