Class I PI3K catalyzes formation of 3-poly-phosphoinositides. The family is divided into IA isoforms, activated by Tyr kinases and the IB isoform (PI3Kgamma), activated by G protein-coupled receptors. Mutations that affect PI3K are implicated in chronic inflammation, although the differential contribution of each isoform to pathology has not been elucidated. Enhanced activation of class IA-PI3K in T cells extends CD4+ memory cell survival, triggering an invasive lymphoproliferative disorder and systemic lupus. As both IA- and IB-PI3K isoforms regulate T cell activation, and activated pathogenic CD4+ memory cells are involved in triggering systemic lupus, we examined whether deletion of IB could reduce the pathological consequences of increased IA-PI3K activity. IB-PI3Kgamma deficiency did not abolish invasion or lymphoproliferation, but reduced CD4+ memory cell survival, autoantibody production, glomerulonephritis, and systemic lupus. Deletion of the IB-PI3Kgamma isoform thus decreased survival of pathogenic CD4+ memory cells, selectively inhibiting systemic lupus development. These results validate the PI3Kgamma isoform as a target for systemic lupus erythematosus treatment.

Class IB-phosphatidylinositol 3-kinase (PI3K) deficiency ameliorates IA-PI3K-induced systemic lupus but not T cell invasion.

HIRSCH, Emilio;
2006-01-01

Abstract

Class I PI3K catalyzes formation of 3-poly-phosphoinositides. The family is divided into IA isoforms, activated by Tyr kinases and the IB isoform (PI3Kgamma), activated by G protein-coupled receptors. Mutations that affect PI3K are implicated in chronic inflammation, although the differential contribution of each isoform to pathology has not been elucidated. Enhanced activation of class IA-PI3K in T cells extends CD4+ memory cell survival, triggering an invasive lymphoproliferative disorder and systemic lupus. As both IA- and IB-PI3K isoforms regulate T cell activation, and activated pathogenic CD4+ memory cells are involved in triggering systemic lupus, we examined whether deletion of IB could reduce the pathological consequences of increased IA-PI3K activity. IB-PI3Kgamma deficiency did not abolish invasion or lymphoproliferation, but reduced CD4+ memory cell survival, autoantibody production, glomerulonephritis, and systemic lupus. Deletion of the IB-PI3Kgamma isoform thus decreased survival of pathogenic CD4+ memory cells, selectively inhibiting systemic lupus development. These results validate the PI3Kgamma isoform as a target for systemic lupus erythematosus treatment.
2006
176(1)
589
593
http://www.jimmunol.org/cgi/reprint/176/1/589
signal transduction; autoimmunity; T cells
BARBER DF; BARTOLOME A; HERNANDEZ C; FLORES JM; FERNANDEZ-ARIAS C; RODRIGUEZ-BORLADO L; HIRSCH E; WYMANN M; BALOMENOS D; CARRERA AC
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/37975
Citazioni
  • ???jsp.display-item.citation.pmc??? 27
  • Scopus 75
  • ???jsp.display-item.citation.isi??? 65
social impact