Excitatory and inhibitory inputs converge on single neurons and are integrated into a coherent output. Although much is known about short-term integration, little is known about how neurons sum opposing signals for long-term synaptic plasticity and memory storage. In Aplysia, we find that when a sensory neuron simultaneously receives inputs from the facilitatory transmitter 5-HT at one set of synapses and the inhibitory transmitter FMRFamide at another, long-term facilitation is blocked and synapse-specific long-term depression dominates. Chromatin immunoprecipitation assays show that 5-HT induces the downstream gene C/EBP by activating CREB1, which recruits CBP for histone acetylation, whereas FMRFa leads to CREB1 displacement by CREB2 and recruitment of HDAC5 to deacetylate histones. When the two transmitters are applied together, facilitation is blocked because CREB2 and HDAC5 displace CREB1-CBP, thereby deacetylating histones.

Integration of long-term-memory-related synaptic plasticity involves bidirectional regulation of gene expression and chromatin structure.

GIUSTETTO, Maurizio;
2002-01-01

Abstract

Excitatory and inhibitory inputs converge on single neurons and are integrated into a coherent output. Although much is known about short-term integration, little is known about how neurons sum opposing signals for long-term synaptic plasticity and memory storage. In Aplysia, we find that when a sensory neuron simultaneously receives inputs from the facilitatory transmitter 5-HT at one set of synapses and the inhibitory transmitter FMRFamide at another, long-term facilitation is blocked and synapse-specific long-term depression dominates. Chromatin immunoprecipitation assays show that 5-HT induces the downstream gene C/EBP by activating CREB1, which recruits CBP for histone acetylation, whereas FMRFa leads to CREB1 displacement by CREB2 and recruitment of HDAC5 to deacetylate histones. When the two transmitters are applied together, facilitation is blocked because CREB2 and HDAC5 displace CREB1-CBP, thereby deacetylating histones.
2002
111
483
493
Epigenetics; learning; memory; synaptic plasticity
GUAN Z.; M. GIUSTETTO; LOMVARDAS; S.; KIM; J. H.; MINIACI; M. C.; SCHWARTZ; J. H.; THANOS; D.; KANDEL E. R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/38131
Citazioni
  • ???jsp.display-item.citation.pmc??? 181
  • Scopus 440
  • ???jsp.display-item.citation.isi??? 389
social impact