In 1894, Ramon y Cajal first proposed that memory is stored as an anatomical change in the strength of neuronal connections. For the following 60 years, little evidence was recruited in support of this idea. This situation changed in the middle of the twentieth century with the development of cellular techniques for the study of synaptic connections and the emergence of new formulations of synaptic plasticity that redefined Ramon y Cajal's idea, making it more suitable for testing. These formulations defined two categories of plasticity, referred to as homosynaptic or Hebbian activity-dependent, and heterosynaptic or modulatory input-dependent. Here we suggest that Hebbian mechanisms are used primarily for learning and for short-term memory but often cannot, by themselves, recruit the events required to maintain a long-term memory. In contrast, heterosynaptic plasticity commonly recruits long-term memory mechanisms that lead to transcription and to synpatic growth. When jointly recruited, homosynaptic mechanisms assure that learning is effectively established and heterosynaptic mechanisms ensure that memory is maintained.

Is heterosynaptic modulation essential for stabilizing Hebbian plasticity and memory?

GIUSTETTO, Maurizio;
2000-01-01

Abstract

In 1894, Ramon y Cajal first proposed that memory is stored as an anatomical change in the strength of neuronal connections. For the following 60 years, little evidence was recruited in support of this idea. This situation changed in the middle of the twentieth century with the development of cellular techniques for the study of synaptic connections and the emergence of new formulations of synaptic plasticity that redefined Ramon y Cajal's idea, making it more suitable for testing. These formulations defined two categories of plasticity, referred to as homosynaptic or Hebbian activity-dependent, and heterosynaptic or modulatory input-dependent. Here we suggest that Hebbian mechanisms are used primarily for learning and for short-term memory but often cannot, by themselves, recruit the events required to maintain a long-term memory. In contrast, heterosynaptic plasticity commonly recruits long-term memory mechanisms that lead to transcription and to synpatic growth. When jointly recruited, homosynaptic mechanisms assure that learning is effectively established and heterosynaptic mechanisms ensure that memory is maintained.
2000
1
11
20
C. H. BAILEY; M. GIUSTETTO; Y. Y. HUANG; R. D. HAWKINS; E. R. KANDEL
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/38169
Citazioni
  • ???jsp.display-item.citation.pmc??? 84
  • Scopus 308
  • ???jsp.display-item.citation.isi??? 292
social impact