Oxidative stress plays a key role in the pathogenesis of diabetic cardiomyopathy, which is characterized by myocyte loss and fibrosis, finally resulting in heart failure. The study looked at the downstream signaling whereby oxidative stress leads to reduced myocardial contractility in the left ventricle of diabetic rats and the effects of dehydroepiandrosterone (DHEA), which production is suppressed in the failing heart and prevents the oxidative damage induced by hyperglycemia in several experimental models. DHEA was given orally at a dose of 4 mg/rat per day for 21 d to rats with streptozotocin (STZ)-induced diabetes and genetic diabetic-fatty (ZDF) rats. Oxidative balance, advanced glycated end products (AGEs) and AGE receptors, cardiac myogenic factors, and myosin heavy-chain gene expression were determined in the left ventricle of treated and untreated STZ-diabetic rats and ZDF rats. Oxidative stress induced by chronic hyperglycemia increased AGE and AGE receptors and led to activation of the pleoitropic transcription factor nuclear factor-kappaB. Nuclear factor-kappaB activation triggered a cascade of signaling, which finally led to the switch in the cardiac myosin heavy-chain (MHC) gene expression from the alpha-MHC isoform to the beta-MHC isoform. DHEA treatment, by preventing the activation of the oxidative pathways induced by hyperglycemia, counteracted the enhanced AGE receptor activation in the heart of STZ-diabetic rats and ZDF rats and normalized downstream signaling, thus avoiding impairment of the cardiac myogenic factors, heart autonomic nervous system and neural crest derivatives (HAND) and myogenic enhancer factor-2, and the switch in MHC gene expression, which are the early events in diabetic cardiomyopathy.

Oxidative stress-dependent impairment of cardiac-specific transcription factors in experimental diabetes

ARAGNO, Manuela;MASTROCOLA, Raffaella;MEDANA, Claudio;CATALANO, Maria Graziella;VERCELLINATTO, Ilenia;DANNI, Oliviero;BOCCUZZI, Giuseppe
2006-01-01

Abstract

Oxidative stress plays a key role in the pathogenesis of diabetic cardiomyopathy, which is characterized by myocyte loss and fibrosis, finally resulting in heart failure. The study looked at the downstream signaling whereby oxidative stress leads to reduced myocardial contractility in the left ventricle of diabetic rats and the effects of dehydroepiandrosterone (DHEA), which production is suppressed in the failing heart and prevents the oxidative damage induced by hyperglycemia in several experimental models. DHEA was given orally at a dose of 4 mg/rat per day for 21 d to rats with streptozotocin (STZ)-induced diabetes and genetic diabetic-fatty (ZDF) rats. Oxidative balance, advanced glycated end products (AGEs) and AGE receptors, cardiac myogenic factors, and myosin heavy-chain gene expression were determined in the left ventricle of treated and untreated STZ-diabetic rats and ZDF rats. Oxidative stress induced by chronic hyperglycemia increased AGE and AGE receptors and led to activation of the pleoitropic transcription factor nuclear factor-kappaB. Nuclear factor-kappaB activation triggered a cascade of signaling, which finally led to the switch in the cardiac myosin heavy-chain (MHC) gene expression from the alpha-MHC isoform to the beta-MHC isoform. DHEA treatment, by preventing the activation of the oxidative pathways induced by hyperglycemia, counteracted the enhanced AGE receptor activation in the heart of STZ-diabetic rats and ZDF rats and normalized downstream signaling, thus avoiding impairment of the cardiac myogenic factors, heart autonomic nervous system and neural crest derivatives (HAND) and myogenic enhancer factor-2, and the switch in MHC gene expression, which are the early events in diabetic cardiomyopathy.
2006
147(12)
5967
5974
M. ARAGNO; R. MASTROCOLA; C. MEDANA; M.G. CATALANO; I. VERCELLINATTO; O. DANNI; G. BOCCUZZI
File in questo prodotto:
File Dimensione Formato  
endocrinology 2006.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 364.12 kB
Formato Adobe PDF
364.12 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/38393
Citazioni
  • ???jsp.display-item.citation.pmc??? 48
  • Scopus 122
  • ???jsp.display-item.citation.isi??? 104
social impact