The G protein-coupled, receptor-activated phosphoinositide 3-kinase gamma (PI3Kgamma) mediates inflammatory responses and negatively controls cardiac contractility by reducing cAMP concentration. Here, we report that mice carrying a targeted mutation in the PI3Kgamma gene causing loss of kinase activity (PI3KgammaKD/KD) display reduced inflammatory reactions but no alterations in cardiac contractility. We show that, in PI3KgammaKD/KD hearts, cAMP levels are normal and that PI3Kgamma-deficient mice but not PI3KgammaKD/KD mice develop dramatic myocardial damage after chronic pressure overload induced by transverse aortic constriction (TAC). Finally, our data indicate that PI3Kgamma is an essential component of a complex controlling PDE3B phosphodiesterase-mediated cAMP destruction. Thus, cardiac PI3Kgamma participates in two distinct signaling pathways: a kinase-dependent activity that controls PKB/Akt as well as MAPK phosphorylation and contributes to TAC-induced cardiac remodeling, and a kinase-independent activity that relies on protein interactions to regulate PDE3B activity and negatively modulates cardiac contractility.
PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects
PATRUCCO E;BARBERIS, Laura;BRANCACCIO, Mara;MARENGO, Stefano;AZZOLINO, Ornella;SILENGO, Lorenzo;ALTRUDA, Fiorella;HIRSCH, Emilio
2004-01-01
Abstract
The G protein-coupled, receptor-activated phosphoinositide 3-kinase gamma (PI3Kgamma) mediates inflammatory responses and negatively controls cardiac contractility by reducing cAMP concentration. Here, we report that mice carrying a targeted mutation in the PI3Kgamma gene causing loss of kinase activity (PI3KgammaKD/KD) display reduced inflammatory reactions but no alterations in cardiac contractility. We show that, in PI3KgammaKD/KD hearts, cAMP levels are normal and that PI3Kgamma-deficient mice but not PI3KgammaKD/KD mice develop dramatic myocardial damage after chronic pressure overload induced by transverse aortic constriction (TAC). Finally, our data indicate that PI3Kgamma is an essential component of a complex controlling PDE3B phosphodiesterase-mediated cAMP destruction. Thus, cardiac PI3Kgamma participates in two distinct signaling pathways: a kinase-dependent activity that controls PKB/Akt as well as MAPK phosphorylation and contributes to TAC-induced cardiac remodeling, and a kinase-independent activity that relies on protein interactions to regulate PDE3B activity and negatively modulates cardiac contractility.File | Dimensione | Formato | |
---|---|---|---|
2004, Cell.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
767.91 kB
Formato
Adobe PDF
|
767.91 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.