OBJECTIVES: ATP-sensitive potassium channels (K+ATP) prominently contribute to basal coronary tone; however, flow reserve during exercise remains unchanged despite channel blockade with glibenclamide (GLI). We hypothesized that increasing perfusion pulsatility, as accompanies exercise, offsets vasoconstriction from K+ATP-channel blockade, and that this effect is blunted by nitric oxide synthase (NOS) inhibition. METHODS: In 31 anaesthetized dogs the left anterior descending artery was blood-perfused by computer-controlled servo-pump, with real-time arterial perfusion pulse pressure (PP) varied from 40 and 100 mm Hg at a constant mean pressure and cardiac workload. RESULTS: At control PP (40 mm Hg), GLI (50 micrograms/min/kg, i.c.) lowered mean regional coronary flow from 37 +/- 5 to 25 +/- 4 ml/min (P < 0.001). However, this was not observed at 100 mm Hg PP (41 +/- 2 vs. 45 +/- 4). NOS inhibition by NG-monomethyl-L-arginine (L-NMMA) did not alter basal flow at 40 mm Hg PP, but modestly lowered flow (-5%, P < 0.001) at higher PP (100 mm Hg), reducing PP-flow augmentation by -36%, and acetylcholine (ACh) induced flow elevation by -39%. Co-infusion of L-NMMA with GLI resulted in net vasoconstriction at both PP levels (-60% and -40% at 40 and 100 mm Hg PP, respectively). Unlike GLI, vasoconstriction by vasopressin (-43 +/- 3% flow reduction at 40 mm Hg PP) or quinacrine (-23 +/- 7%) was not offset at higher pulsatility (-44 +/- 4 and -23 +/- 6%, respectively). Neither of the latter agents inhibited ACh- or PP-induced flow responses, nor did they modify the effect of L-NMMA on these responses. CONCLUSIONS: Increased coronary flow pulsatility offsets vasoconstriction from K+ATP blockade by likely enhancing NO release. This mechanism may assist exercise-mediated dilation in settings where K+ATP opening is partially compromised.

Reversal of glibenclamide-induced coronary vasoconstriction by enhanced perfusion pulsatility: possible role for nitric oxide.

PAGLIARO, Pasquale;
2000-01-01

Abstract

OBJECTIVES: ATP-sensitive potassium channels (K+ATP) prominently contribute to basal coronary tone; however, flow reserve during exercise remains unchanged despite channel blockade with glibenclamide (GLI). We hypothesized that increasing perfusion pulsatility, as accompanies exercise, offsets vasoconstriction from K+ATP-channel blockade, and that this effect is blunted by nitric oxide synthase (NOS) inhibition. METHODS: In 31 anaesthetized dogs the left anterior descending artery was blood-perfused by computer-controlled servo-pump, with real-time arterial perfusion pulse pressure (PP) varied from 40 and 100 mm Hg at a constant mean pressure and cardiac workload. RESULTS: At control PP (40 mm Hg), GLI (50 micrograms/min/kg, i.c.) lowered mean regional coronary flow from 37 +/- 5 to 25 +/- 4 ml/min (P < 0.001). However, this was not observed at 100 mm Hg PP (41 +/- 2 vs. 45 +/- 4). NOS inhibition by NG-monomethyl-L-arginine (L-NMMA) did not alter basal flow at 40 mm Hg PP, but modestly lowered flow (-5%, P < 0.001) at higher PP (100 mm Hg), reducing PP-flow augmentation by -36%, and acetylcholine (ACh) induced flow elevation by -39%. Co-infusion of L-NMMA with GLI resulted in net vasoconstriction at both PP levels (-60% and -40% at 40 and 100 mm Hg PP, respectively). Unlike GLI, vasoconstriction by vasopressin (-43 +/- 3% flow reduction at 40 mm Hg PP) or quinacrine (-23 +/- 7%) was not offset at higher pulsatility (-44 +/- 4 and -23 +/- 6%, respectively). Neither of the latter agents inhibited ACh- or PP-induced flow responses, nor did they modify the effect of L-NMMA on these responses. CONCLUSIONS: Increased coronary flow pulsatility offsets vasoconstriction from K+ATP blockade by likely enhancing NO release. This mechanism may assist exercise-mediated dilation in settings where K+ATP opening is partially compromised.
2000
45
1001
1009
P. PAGLIARO; PAOLOCCI N; ISODA T; SAAVEDRA WF; SUNAGAWA G; KASS DA.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/38430
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 8
social impact