Since it is known that Model-Based Diagnosis may suffer from a potentially exponential size of the search space, a number of techniques have been proposed for alleviating the problem. Among them, some forms of compilation of the domain model have been investigated. In the present paper we address the problem of evaluating the complexity of diagnostic problem solving when Ordered Binary Decision Diagrams are adopted for representing the normal and faulty behavior of the system to be diagnosed and the solution space. In particular we analyze the case of the diagnosis of static models that exhibit a directionality from inputs to outputs (an important example of this type of models is the class of combinatorial digital circuits). We show that the problem of determining the set of all diagnoses and of determining the minimum cardinality diagnoses can be solved in time and space polynomial with respect to the size of the OBDD encoding the domain model. These results hold regardless of the degree of system observability including whether observations are precise or uncertain. We then analyze the complexity of refining the set of diagnoses by making additional observations and by using a test vector for troubleshooting the system. In particular we show that in the latter case we lose the formal guarantee that the diagnosis can be performed in polynomial time with respect to the size of the compiled domain model.

Model-Based Diagnosis Through OBDD Compilation: A Complexity Analysis

TORASSO, Pietro;TORTA, GIANLUCA
2006-01-01

Abstract

Since it is known that Model-Based Diagnosis may suffer from a potentially exponential size of the search space, a number of techniques have been proposed for alleviating the problem. Among them, some forms of compilation of the domain model have been investigated. In the present paper we address the problem of evaluating the complexity of diagnostic problem solving when Ordered Binary Decision Diagrams are adopted for representing the normal and faulty behavior of the system to be diagnosed and the solution space. In particular we analyze the case of the diagnosis of static models that exhibit a directionality from inputs to outputs (an important example of this type of models is the class of combinatorial digital circuits). We show that the problem of determining the set of all diagnoses and of determining the minimum cardinality diagnoses can be solved in time and space polynomial with respect to the size of the OBDD encoding the domain model. These results hold regardless of the degree of system observability including whether observations are precise or uncertain. We then analyze the complexity of refining the set of diagnoses by making additional observations and by using a test vector for troubleshooting the system. In particular we show that in the latter case we lose the formal guarantee that the diagnosis can be performed in polynomial time with respect to the size of the compiled domain model.
2006
Reasoning, Action and Interaction in AI Theories and Systems,
Springer
LNCS 4155
287
305
3540379010
http://www.springerlink.com/content/d07w215380021054/
Model based Diagnosis; complexity analisys; OBDD compilation
P. TORASSO; G. TORTA
File in questo prodotto:
File Dimensione Formato  
LNCS4155PublishedVersion.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 565.33 kB
Formato Adobe PDF
565.33 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/38553
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 24
social impact