Glass–ceramic macroporous scaffolds for tissue engineering have been developed using a polyurethane sponge template and bioactive glass powders. The starting glass (CEL2) belongs to the system SiO2–P2O5–CaO–MgO–Na2O–K2O and has been synthesised by a conventional melting–quenching route. A slurry of CEL2 powder, polyvinyl alcohol and water has been prepared in order to coat, by impregnation, the polymeric template. An optimised thermal treatment was then use to remove the sponge and to sinter the glass powders, leading to a glass–ceramic replica of the template. Morphological observations, image analyses, mechanical tests and in vitro tests showed that the obtained devices are good candidates as scaffolds for bone-tissue engineering, in terms of pore-size distribution, pore interconnection, surface roughness, and both bioactivity and biocompatibility. In particular, a human osteoblast cell line (MG-63) seeded onto the scaffold after a standardised preconditioning route in simulated body fluid showed a high degree of cell proliferation and a good ability to produce calcium nodules. The obtained results were enhanced by the addition of bone morphogenetic proteins after cell seeding
Development of glass-ceramic scaffolds for bone tissue engineering: characterisation, proliferation of human osteoblasts and nodule formation
BASSI, Francesco;MARTINASSO, Germana;MUZIO, Giuliana;CANUTO, Rosa Angela
2007-01-01
Abstract
Glass–ceramic macroporous scaffolds for tissue engineering have been developed using a polyurethane sponge template and bioactive glass powders. The starting glass (CEL2) belongs to the system SiO2–P2O5–CaO–MgO–Na2O–K2O and has been synthesised by a conventional melting–quenching route. A slurry of CEL2 powder, polyvinyl alcohol and water has been prepared in order to coat, by impregnation, the polymeric template. An optimised thermal treatment was then use to remove the sponge and to sinter the glass powders, leading to a glass–ceramic replica of the template. Morphological observations, image analyses, mechanical tests and in vitro tests showed that the obtained devices are good candidates as scaffolds for bone-tissue engineering, in terms of pore-size distribution, pore interconnection, surface roughness, and both bioactivity and biocompatibility. In particular, a human osteoblast cell line (MG-63) seeded onto the scaffold after a standardised preconditioning route in simulated body fluid showed a high degree of cell proliferation and a good ability to produce calcium nodules. The obtained results were enhanced by the addition of bone morphogenetic proteins after cell seedingFile | Dimensione | Formato | |
---|---|---|---|
Acta Biomat 2007.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
1.94 MB
Formato
Adobe PDF
|
1.94 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.