Hemopexin (HPX) is the plasma protein with the highest binding affinity to heme among known proteins. It is mainly expressed in liver, and belongs to acute phase reactants, the synthesis of which is induced after inflammation. Heme is potentially highly toxic because of its ability to intercalate into lipid membrane and to produce hydroxyl radicals. The binding strength between heme and HPX, and the presence of a specific heme-HPX receptor able to catabolize the complex and to induce intracellular antioxidant activities, suggest that hemopexin is the major vehicle for the transportation of heme in the plasma, thus preventing heme-mediated oxidative stress and heme-bound iron loss. In this review, we discuss the experimental data that support this view and show that the most important physiological role of HPX is to act as an antioxidant after blood heme overload, rather than to participate in iron metabolism. Particular attention is also put on the structure of the protein and on its regulation during the acute phase reaction.

Hemopexin: structure, function, and regulation

TOLOSANO, Emanuela;ALTRUDA, Fiorella
2002-01-01

Abstract

Hemopexin (HPX) is the plasma protein with the highest binding affinity to heme among known proteins. It is mainly expressed in liver, and belongs to acute phase reactants, the synthesis of which is induced after inflammation. Heme is potentially highly toxic because of its ability to intercalate into lipid membrane and to produce hydroxyl radicals. The binding strength between heme and HPX, and the presence of a specific heme-HPX receptor able to catabolize the complex and to induce intracellular antioxidant activities, suggest that hemopexin is the major vehicle for the transportation of heme in the plasma, thus preventing heme-mediated oxidative stress and heme-bound iron loss. In this review, we discuss the experimental data that support this view and show that the most important physiological role of HPX is to act as an antioxidant after blood heme overload, rather than to participate in iron metabolism. Particular attention is also put on the structure of the protein and on its regulation during the acute phase reaction.
2002
21
297
306
E. TOLOSANO; F. ALTRUDA
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/39245
Citazioni
  • ???jsp.display-item.citation.pmc??? 152
  • Scopus 346
  • ???jsp.display-item.citation.isi??? 334
social impact