Zolpidem is a hypnotic benzodiazepine site agonist with some gamma-aminobutyric acid (GABA)(A) receptor subtype selectivity. Here, we have tested the effects of zolpidem on the hippocampus of gamma2 subunit (gamma2F77I) point mutant mice. Analysis of forebrain GABA(A) receptor expression with immunocytochemistry, quantitative [(3)H]muscimol and [(35)S] t-butylbicyclophosphorothionate (TBPS) autoradiography, membrane binding with [(3)H]flunitrazepam and [(3)H]muscimol, and comparison of miniature inhibitory postsynaptic current (mIPSC) parameters did not reveal any differences between homozygous gamma2I77/I77 and gamma2F77/F77 mice. However, quantitative immunoblot analysis of gamma2I77/I77 hippocampi showed some increased levels of gamma2, alpha1, alpha4 and delta subunits, suggesting that differences between strains may exist in unassembled subunit levels, but not in assembled receptors. Zolpidem (1 microm) enhanced the decay of mIPSCs in CA1 pyramidal cells of control (C57BL/6J, gamma2F77/F77) mice by approximately 60%, and peak amplitude by approximately 20% at 33-34 degrees C in vitro. The actions of zolpidem (100 nm or 1 microm) were substantially reduced in gamma2I77/I77 mice, although residual effects included a 9% increase in decay and 5% decrease in peak amplitude. Similar results were observed in CA1 stratum oriens/alveus interneurons. At network level, the effect of zolpidem (10 microm) on carbachol-induced oscillations in the CA3 area of gamma2I77/I77 mice was significantly different compared with controls. Thus, the gamma2F77I point mutation virtually abolished the actions of zolpidem on GABA(A) receptors in the hippocampus. However, some residual effects of zolpidem may involve receptors that do not contain the gamma2 subunit.

Loss of zolpidem efficacy in the hippocampus of mice with the GABAA receptor gamma2 F77I point mutation

OBERTO, Alessandra;
2005-01-01

Abstract

Zolpidem is a hypnotic benzodiazepine site agonist with some gamma-aminobutyric acid (GABA)(A) receptor subtype selectivity. Here, we have tested the effects of zolpidem on the hippocampus of gamma2 subunit (gamma2F77I) point mutant mice. Analysis of forebrain GABA(A) receptor expression with immunocytochemistry, quantitative [(3)H]muscimol and [(35)S] t-butylbicyclophosphorothionate (TBPS) autoradiography, membrane binding with [(3)H]flunitrazepam and [(3)H]muscimol, and comparison of miniature inhibitory postsynaptic current (mIPSC) parameters did not reveal any differences between homozygous gamma2I77/I77 and gamma2F77/F77 mice. However, quantitative immunoblot analysis of gamma2I77/I77 hippocampi showed some increased levels of gamma2, alpha1, alpha4 and delta subunits, suggesting that differences between strains may exist in unassembled subunit levels, but not in assembled receptors. Zolpidem (1 microm) enhanced the decay of mIPSCs in CA1 pyramidal cells of control (C57BL/6J, gamma2F77/F77) mice by approximately 60%, and peak amplitude by approximately 20% at 33-34 degrees C in vitro. The actions of zolpidem (100 nm or 1 microm) were substantially reduced in gamma2I77/I77 mice, although residual effects included a 9% increase in decay and 5% decrease in peak amplitude. Similar results were observed in CA1 stratum oriens/alveus interneurons. At network level, the effect of zolpidem (10 microm) on carbachol-induced oscillations in the CA3 area of gamma2I77/I77 mice was significantly different compared with controls. Thus, the gamma2F77I point mutation virtually abolished the actions of zolpidem on GABA(A) receptors in the hippocampus. However, some residual effects of zolpidem may involve receptors that do not contain the gamma2 subunit.
2005
21
3002
3016
Cope, Dw; Halbsguth, C; Karayannis, T; Wulff, P; Ferraguti, F; Hoeger, H; Leppä, E; Linden, Am; Oberto, Alessandra; Ogris, W; Korpi, Er; Sieghart, W; Somogyi, P; Wisden, W; Capogna, M.
File in questo prodotto:
File Dimensione Formato  
EurJNeurosci_Cope_2005.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 565.9 kB
Formato Adobe PDF
565.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/39420
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 30
social impact