OBJECTIVE: It is known that glucagon administration elicits ACTH and cortisol responses in humans, although this effect takes place after intramuscular or subcutaneous but not after the intravenous route of administration. The mechanisms underlying this stimulatory effect on corticotroph secretion are unknown but they are unrelated to glucose variations and stress-mediated actions. DESIGN AND METHODS: To throw further light on the stimulatory effect of i.m. glucagon on the pituitary-adrenal axis, using six normal young female volunteers (26-32 years, body mass index 19.7-22.5 kg/m(2)) we studied the interaction between glucagon (GLU; 0.017 mg/kg i.m.) and human corticotropin-releasing hormone (hCRH; 2.0 microg/kg i.v.) or vasopressin (AVP; 0.17 U/kg i.m.). The interactions between hCRH and AVP on the hypothalamo-pituitary-adrenal (HPA) axis and the GH response to GLU alone or combined with hCRH or AVP were also studied. RESULTS: GLU i.m. administration elicited a clear increase in ACTH (peak vs baseline, means+/-s.e.m.: 11.6+/-3.3 vs 4.2+/-0.3 pmol/l, P<0.05), cortisol (613.5+/-65.6 vs 436.9+/-19.3 nmol/l, P<0.05) and GH levels (11.6+/-3.4 vs 3.3+/-0.7 microg/l, P<0.05). The ACTH response to GLU (area under the curve: 426.4+/-80.9 pmol/l per 120 min) was higher than that to AVP (206.3+/-38.8 pmol/l per 120 min, P<0.02) and that to hCRH (299.8+/-39.8 pmol/l per 120 min) although this latter difference did not attain statistical significance. The GLU-induced cortisol response (28336.9+/-2430.7 nmol/l per 120 min) was similar to those after hCRH (24099.2+/-2075.2 nmol/l per 120 min) and AVP (21808.7+/-1948.2 nmol/l per 120 min). GLU and hCRH had an additive effect on ACTH (964.9+/-106.6 pmol/l per 120 min, P<0.02) and a less than additive effect on cortisol levels (35542.5+/-2720. 2 nmol/l per 120 min). Similarly, GLU and AVP had an additive effect on ACTH (825.6+/-139.6 pmol/l per 120 min, P<0.02) and an effect less than additive on cortisol levels (33059.2+/-1965.3 nmol/l per 120 min). The effects of GLU co-administered with hCRH or AVP were similar to those of the combined administration of hCRH and AVP on ACTH (906. 0+/-152.7 pmol/l per 120 min) and cortisol (34383.5+/-1669.2 nmol/l per 120min) levels. The GH response to GLU was not modified by hCRH or AVP. CONCLUSIONS: These results show that i.m. glucagon administration is a provocative stimulus of ACTH and cortisol secretion, at least as potent as hCRH and AVP. The ACTH-releasing effect of i.m. glucagon is not mediated by selective CRH or AVP stimulation but the possibility that both neurohormones play a role could be hypothesized.

Interaction between glucagon and human corticotropin-releasing hormone or vasopressin on ACTH and cortisol secretion in humans.

ARVAT, Emanuela;MACCARIO, Mauro;GIORDANO, Roberta;BROGLIO, Fabio;CAMANNI, Franco;GHIGO, Ezio
2000-01-01

Abstract

OBJECTIVE: It is known that glucagon administration elicits ACTH and cortisol responses in humans, although this effect takes place after intramuscular or subcutaneous but not after the intravenous route of administration. The mechanisms underlying this stimulatory effect on corticotroph secretion are unknown but they are unrelated to glucose variations and stress-mediated actions. DESIGN AND METHODS: To throw further light on the stimulatory effect of i.m. glucagon on the pituitary-adrenal axis, using six normal young female volunteers (26-32 years, body mass index 19.7-22.5 kg/m(2)) we studied the interaction between glucagon (GLU; 0.017 mg/kg i.m.) and human corticotropin-releasing hormone (hCRH; 2.0 microg/kg i.v.) or vasopressin (AVP; 0.17 U/kg i.m.). The interactions between hCRH and AVP on the hypothalamo-pituitary-adrenal (HPA) axis and the GH response to GLU alone or combined with hCRH or AVP were also studied. RESULTS: GLU i.m. administration elicited a clear increase in ACTH (peak vs baseline, means+/-s.e.m.: 11.6+/-3.3 vs 4.2+/-0.3 pmol/l, P<0.05), cortisol (613.5+/-65.6 vs 436.9+/-19.3 nmol/l, P<0.05) and GH levels (11.6+/-3.4 vs 3.3+/-0.7 microg/l, P<0.05). The ACTH response to GLU (area under the curve: 426.4+/-80.9 pmol/l per 120 min) was higher than that to AVP (206.3+/-38.8 pmol/l per 120 min, P<0.02) and that to hCRH (299.8+/-39.8 pmol/l per 120 min) although this latter difference did not attain statistical significance. The GLU-induced cortisol response (28336.9+/-2430.7 nmol/l per 120 min) was similar to those after hCRH (24099.2+/-2075.2 nmol/l per 120 min) and AVP (21808.7+/-1948.2 nmol/l per 120 min). GLU and hCRH had an additive effect on ACTH (964.9+/-106.6 pmol/l per 120 min, P<0.02) and a less than additive effect on cortisol levels (35542.5+/-2720. 2 nmol/l per 120 min). Similarly, GLU and AVP had an additive effect on ACTH (825.6+/-139.6 pmol/l per 120 min, P<0.02) and an effect less than additive on cortisol levels (33059.2+/-1965.3 nmol/l per 120 min). The effects of GLU co-administered with hCRH or AVP were similar to those of the combined administration of hCRH and AVP on ACTH (906. 0+/-152.7 pmol/l per 120 min) and cortisol (34383.5+/-1669.2 nmol/l per 120min) levels. The GH response to GLU was not modified by hCRH or AVP. CONCLUSIONS: These results show that i.m. glucagon administration is a provocative stimulus of ACTH and cortisol secretion, at least as potent as hCRH and AVP. The ACTH-releasing effect of i.m. glucagon is not mediated by selective CRH or AVP stimulation but the possibility that both neurohormones play a role could be hypothesized.
2000
143
1
99
104
E. ARVAT; MACCAGNO B.; RAMUNNI J.; MACCARIO M.; GIORDANO R.; BROGLIO F.; CAMANNI F.; GHIGO E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/39625
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 22
social impact