The hypothalamic nonapeptide oxytocin plays a crucial role in many reproductive and behavioural functions. However, in recent years, an additional new role for oxytocin has been identified in neoplastic pathology. In tumours, oxytocin acts as a growth regulator, through the activation of a specific G-coupled transmembrane receptor, the oxytocin receptor. In vitro, oxytocin inhibits proliferation of neoplastic cells of either epithelial (mammary and endometrial), nervous or bone origin, all expressing oxytocin receptor. Furthermore, an oxytocin growth-inhibiting effect was also tested and confirmed in vivo in mouse and rat mammary carcinomas. In neoplastic cells derived from two additional oxytocin target tissues, trophoblast and endothelium, oxytocin was found to promote cell proliferation, an effect opposite to that previously described in all other neoplastic oxytocin-responsive cells. The signal transduction pathways coupled to the biological effects of oxytocin are different in oxytocin growth-inhibited or growth-stimulated cells, and may depend on the membrane localization of the oxytocin receptor itself. The inhibitory effect of oxytocin is apparently mediated by activation of the cAMP-protein kinase A pathway, a nonconventional oxytocin signalling pathway, whereas the mitogenic effect is coupled to the increase of intracellular [Ca(2+)] and tyrosine phosphorylation, 'classical' oxytocin transducers. Moreover, the oxytocin receptor localization in lipid rafts enriched in caveolin-1 turns the inhibition of cell growth into a proliferative response, eliciting different epidermal growth factor receptor/mitogen-activated protein kinase activation patterns. This unexpected role of oxytocin (and oxytocin analogues) in regulating cell proliferation, as well as the widespread expression of oxytocin receptors in neoplastic tissues of different origin, opens up new perspectives on the biological role of the oxytocin-oxytocin receptor system in cancer.

Oxytocin and oxytocin receptors in cancer cells and proliferation

CASSONI, Paola;SAPINO, Anna;BUSSOLATI, Giovanni
2004-01-01

Abstract

The hypothalamic nonapeptide oxytocin plays a crucial role in many reproductive and behavioural functions. However, in recent years, an additional new role for oxytocin has been identified in neoplastic pathology. In tumours, oxytocin acts as a growth regulator, through the activation of a specific G-coupled transmembrane receptor, the oxytocin receptor. In vitro, oxytocin inhibits proliferation of neoplastic cells of either epithelial (mammary and endometrial), nervous or bone origin, all expressing oxytocin receptor. Furthermore, an oxytocin growth-inhibiting effect was also tested and confirmed in vivo in mouse and rat mammary carcinomas. In neoplastic cells derived from two additional oxytocin target tissues, trophoblast and endothelium, oxytocin was found to promote cell proliferation, an effect opposite to that previously described in all other neoplastic oxytocin-responsive cells. The signal transduction pathways coupled to the biological effects of oxytocin are different in oxytocin growth-inhibited or growth-stimulated cells, and may depend on the membrane localization of the oxytocin receptor itself. The inhibitory effect of oxytocin is apparently mediated by activation of the cAMP-protein kinase A pathway, a nonconventional oxytocin signalling pathway, whereas the mitogenic effect is coupled to the increase of intracellular [Ca(2+)] and tyrosine phosphorylation, 'classical' oxytocin transducers. Moreover, the oxytocin receptor localization in lipid rafts enriched in caveolin-1 turns the inhibition of cell growth into a proliferative response, eliciting different epidermal growth factor receptor/mitogen-activated protein kinase activation patterns. This unexpected role of oxytocin (and oxytocin analogues) in regulating cell proliferation, as well as the widespread expression of oxytocin receptors in neoplastic tissues of different origin, opens up new perspectives on the biological role of the oxytocin-oxytocin receptor system in cancer.
2004
16
362
364
http://www3.interscience.wiley.com/journal/118791733/abstract?CRETRY=1&SRETRY=0
cancer; neoplastic pathology; oxytocin; oxytocin receptors; biological effects
CASSONI P; SAPINO A; MARROCCO T; CHINI B; BUSSOLATI G
File in questo prodotto:
File Dimensione Formato  
Cassoni_JN_2004.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 60.55 kB
Formato Adobe PDF
60.55 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/39706
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 73
  • ???jsp.display-item.citation.isi??? 68
social impact