Following axotomy, cerebellar Purkinje cells (PCs) do not elongate their axons, even in a favourable environment, and are resistant to death. They have no constitutive presence of common growth-associated proteins, such as GAP-43 and c-Jun. Previous experiments show that injured transgenic PCs overexpressing GAP-43 exhibit a profuse sprouting along the axon and at its severed end. Nevertheless, the lesioned axons are unable to regenerate either spontaneously or into growth-permissive environments. In addition, a considerable number of GAP-43 transgenic PCs degenerate after injury. c-Jun is an inducible transcription factor expressed in axotomized central neurons and regenerating peripheral neurons. It also contributes to programmed cell death during development. To test whether c-Jun could modify the response of PCs to axotomy or enhance the growth/death phenomena of GAP-43 Purkinje neurons, we generated transgenic mice overexpressing c-Jun in PCs. However, c-Jun upregulation did not affect the adult intact phenotype of these neurons and their regenerative and survival capabilities after axotomy. Also in the cross-bred GAP-43/c-Jun mice, c-Jun did not modify the response of GAP-43 PCs to axotomy. By contrast, in organotypic cultures of cerebellum taken from 9-day-old-pups, the survival capabilities of PCs overexpressing c-Jun decreased, in association with a consistent c-Jun phosphorylation. On the whole our data show that c-Jun alone is unable to trigger regenerative or degenerative phenomena in PCs and suggest that the cellular action of this early gene in developing and mature neurons strongly depends on interplaying intracellular signals.

Regenerative and survival capabilities of Purkinje cells overexpressing c-Jun.

CARULLI, Daniela;BUFFO, Annalisa;BOTTA C.;ALTRUDA, Fiorella;STRATA, Pier Giorgio
2002-01-01

Abstract

Following axotomy, cerebellar Purkinje cells (PCs) do not elongate their axons, even in a favourable environment, and are resistant to death. They have no constitutive presence of common growth-associated proteins, such as GAP-43 and c-Jun. Previous experiments show that injured transgenic PCs overexpressing GAP-43 exhibit a profuse sprouting along the axon and at its severed end. Nevertheless, the lesioned axons are unable to regenerate either spontaneously or into growth-permissive environments. In addition, a considerable number of GAP-43 transgenic PCs degenerate after injury. c-Jun is an inducible transcription factor expressed in axotomized central neurons and regenerating peripheral neurons. It also contributes to programmed cell death during development. To test whether c-Jun could modify the response of PCs to axotomy or enhance the growth/death phenomena of GAP-43 Purkinje neurons, we generated transgenic mice overexpressing c-Jun in PCs. However, c-Jun upregulation did not affect the adult intact phenotype of these neurons and their regenerative and survival capabilities after axotomy. Also in the cross-bred GAP-43/c-Jun mice, c-Jun did not modify the response of GAP-43 PCs to axotomy. By contrast, in organotypic cultures of cerebellum taken from 9-day-old-pups, the survival capabilities of PCs overexpressing c-Jun decreased, in association with a consistent c-Jun phosphorylation. On the whole our data show that c-Jun alone is unable to trigger regenerative or degenerative phenomena in PCs and suggest that the cellular action of this early gene in developing and mature neurons strongly depends on interplaying intracellular signals.
2002
16
105
118
axotomy cerebellum; GAP-43; growth-associated genes; phosphorylation; transgenic mice
CARULLI D ;BUFFO A ;BOTTA C ;ALTRUDA F ;STRATA P
File in questo prodotto:
File Dimensione Formato  
Carulli et al., 2002.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 831.08 kB
Formato Adobe PDF
831.08 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/39726
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 25
social impact