The refractoriness of T cells to the interferon-gamma (IFN-gamma)/signal transducer and activator of transcription 1 (STAT1) pathway, which shields them from the antiproliferative effect of IFN-gamma, is attributed mainly to down-regulation of the IFN-gammaR2 signaling chain. However, the mechanisms responsible for this down-regulation are unclear. Here we show that iron uptake mediated by the transferrin receptor (TfR) delivers a signal that leads to IFN-gammaR2 internalization and thus plays an essential role in attenuating activation of the IFN-gamma/STAT1 pathway in human T lymphocytes. The effect of iron on IFN-gammaR2 internalization was specific as it did not affect expression of the IFN-gammaR1 binding chain. Deferoxamine (DFO), an iron-chelating agent, up-regulated IFN-gammaR2 surface expression and reinstated IFN-gamma/STAT1 activation in proliferating T lymphocytes. Resistance of malignant T cells to the antiproliferative effect of IFN-gamma in vitro was abrogated by addition of DFO. Conversely, iron inhibited IFN-gamma-induced apoptosis in malignant T cells in serum-free conditions. In combination but not individually, DFO and IFN-gamma strongly inhibited growth of human malignant T cells in an in vivo severe combined immunodeficient (SCID) mouse model. These data provide valuable insights for novel therapeutic approaches aimed at reinstating the IFN-gamma/STAT1 apoptotic signaling pathway in autoreactive or neoplastic T cells by means of iron chelation.
Iron regulates T-lymphocyte sensitivity to the IFN-gamma/STAT1 signaling pathway in vitro and in vivo.
REGIS, GABRIELLA;CONTI, Laura;TOMAINO, BARBARA;NOVELLI, Francesco;GIOVARELLI, Mirella;
2005-01-01
Abstract
The refractoriness of T cells to the interferon-gamma (IFN-gamma)/signal transducer and activator of transcription 1 (STAT1) pathway, which shields them from the antiproliferative effect of IFN-gamma, is attributed mainly to down-regulation of the IFN-gammaR2 signaling chain. However, the mechanisms responsible for this down-regulation are unclear. Here we show that iron uptake mediated by the transferrin receptor (TfR) delivers a signal that leads to IFN-gammaR2 internalization and thus plays an essential role in attenuating activation of the IFN-gamma/STAT1 pathway in human T lymphocytes. The effect of iron on IFN-gammaR2 internalization was specific as it did not affect expression of the IFN-gammaR1 binding chain. Deferoxamine (DFO), an iron-chelating agent, up-regulated IFN-gammaR2 surface expression and reinstated IFN-gamma/STAT1 activation in proliferating T lymphocytes. Resistance of malignant T cells to the antiproliferative effect of IFN-gamma in vitro was abrogated by addition of DFO. Conversely, iron inhibited IFN-gamma-induced apoptosis in malignant T cells in serum-free conditions. In combination but not individually, DFO and IFN-gamma strongly inhibited growth of human malignant T cells in an in vivo severe combined immunodeficient (SCID) mouse model. These data provide valuable insights for novel therapeutic approaches aimed at reinstating the IFN-gamma/STAT1 apoptotic signaling pathway in autoreactive or neoplastic T cells by means of iron chelation.File | Dimensione | Formato | |
---|---|---|---|
BLOOD IRON.pdf
Accesso riservato
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
338.46 kB
Formato
Adobe PDF
|
338.46 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.