Arginine metabolism by arginases may be of importance in health and disease, either by competing with nitric oxide synthases for the common substrate or by the production of L-ornithine. L-ornithine serves as a precursor for L-proline and polyamines, which may be involved in tissue remodelling by promoting collagen synthesis and cell proliferation. Arginase activity potentiates airway reactivity by reducing the production of bronchodilatory nitric oxide. Increased arginase activity has been implicated in the development of allergen-induced airway hyper-responsiveness in experimental asthma. In addition, reduced L-arginine availability to inducible nitric oxide synthase by arginase may lead to an increased production of peroxynitrite, contributing to increased airway smooth muscle contractility, airway inflammation and cell damage in this disease. Recent studies demonstrate that the upregulation of arginase by T helper type 2 cytokines in lung tissue as well as in cultured airway fibroblasts indicates a possible role of the enzyme in airway re-modelling. These findings, in conjunction with human studies showing a role for arginase in acute asthma, open a new horizon for the therapeutic potential of drugs targeting the arginase pathway in asthma.

The therapeutic potential of drugs targeting the arginase pathway in asthma

RICCIARDOLO, Fabio Luigi Massimo;
2005

Abstract

Arginine metabolism by arginases may be of importance in health and disease, either by competing with nitric oxide synthases for the common substrate or by the production of L-ornithine. L-ornithine serves as a precursor for L-proline and polyamines, which may be involved in tissue remodelling by promoting collagen synthesis and cell proliferation. Arginase activity potentiates airway reactivity by reducing the production of bronchodilatory nitric oxide. Increased arginase activity has been implicated in the development of allergen-induced airway hyper-responsiveness in experimental asthma. In addition, reduced L-arginine availability to inducible nitric oxide synthase by arginase may lead to an increased production of peroxynitrite, contributing to increased airway smooth muscle contractility, airway inflammation and cell damage in this disease. Recent studies demonstrate that the upregulation of arginase by T helper type 2 cytokines in lung tissue as well as in cultured airway fibroblasts indicates a possible role of the enzyme in airway re-modelling. These findings, in conjunction with human studies showing a role for arginase in acute asthma, open a new horizon for the therapeutic potential of drugs targeting the arginase pathway in asthma.
14
1221
1231
RICCIARDOLO FLM; ZAAGSMA J; MEURS H
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/40077
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 39
  • ???jsp.display-item.citation.isi??? 34
social impact