Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) in certain normal and tumor cells is associated with protection against the growth inhibitory effect of reactive aldehydes generated during membrane lipid peroxidation. We found that human lung tumor (A549) cells, which express high levels of ALDH3A1 protein, were significantly less susceptible to the antiproliferative effects of 4-hydroxynonenal compared to human hepatoma HepG2 or SK-HEP-1 cells that lack ALDH3A1 expression. However, A549 cells became susceptible to lipid peroxidation products when they were treated with arachidonic acid. The growth suppression of A549 cells induced by arachidonic acid was associated with increased levels of lipid peroxidation and with reduced ALDH3A1 enzymatic activity, protein, and mRNA levels. Furthermore, arachidonic acid treatment of the A549 cells resulted in an increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma), whereas NF-kappaB binding activity was inhibited. Blocking PPARgamma using a selective antagonist, GW9662, prevented the arachidonic acid-mediated reduction of ALDH3A1 expression as well as the growth inhibition of A549 cells, suggesting the central role of PPARgamma in these phenomena. The increase in PPARgamma and the reduction in ALDH3A1 were also prevented by exposing cells to vitamin E concomitant with arachidonic acid treatment. In conclusion, our data show that the arachidonic acid-induced suppression of A549 cell growth is associated with increased lipid peroxidation and decreased ALDH3A1 expression, which may be due to activation of PPARgamma.

Arachidonic acid suppresses growth of human lung tumor A549 cells through down-regulation of ALDH3A1 expression

MUZIO, Giuliana;TROMBETTA, Antonella;CANUTO, Rosa Angela
2006

Abstract

Expression of aldehyde dehydrogenase 3A1 (ALDH3A1) in certain normal and tumor cells is associated with protection against the growth inhibitory effect of reactive aldehydes generated during membrane lipid peroxidation. We found that human lung tumor (A549) cells, which express high levels of ALDH3A1 protein, were significantly less susceptible to the antiproliferative effects of 4-hydroxynonenal compared to human hepatoma HepG2 or SK-HEP-1 cells that lack ALDH3A1 expression. However, A549 cells became susceptible to lipid peroxidation products when they were treated with arachidonic acid. The growth suppression of A549 cells induced by arachidonic acid was associated with increased levels of lipid peroxidation and with reduced ALDH3A1 enzymatic activity, protein, and mRNA levels. Furthermore, arachidonic acid treatment of the A549 cells resulted in an increased expression of peroxisome proliferator-activated receptor gamma (PPARgamma), whereas NF-kappaB binding activity was inhibited. Blocking PPARgamma using a selective antagonist, GW9662, prevented the arachidonic acid-mediated reduction of ALDH3A1 expression as well as the growth inhibition of A549 cells, suggesting the central role of PPARgamma in these phenomena. The increase in PPARgamma and the reduction in ALDH3A1 were also prevented by exposing cells to vitamin E concomitant with arachidonic acid treatment. In conclusion, our data show that the arachidonic acid-induced suppression of A549 cell growth is associated with increased lipid peroxidation and decreased ALDH3A1 expression, which may be due to activation of PPARgamma.
FREE RADICAL BIOLOGY & MEDICINE
40(11)
1929
1938
ALDH3A1; A549 human lung tumor cells; Human hepatoma cells; Arachidonic acid; PPARγ; Lipid peroxidation; 4-Hydroxynonenal; Free radicals
G. Muzio; A. Trombetta; M. Maggiora; G. Martinasso; V. Vasiliou; N. Lassen; R.A. Canuto
File in questo prodotto:
File Dimensione Formato  
FRBM 2006.pdf

non disponibili

Descrizione: articolo pubblicato
Tipo di file: PDF EDITORIALE
Dimensione 505.2 kB
Formato Adobe PDF
505.2 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/2318/40308
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 36
social impact