The limiting procedure of special Kahler manifolds to their rigid limit is studied for moduli spaces of Calabi-Yau manifolds in the neighbourhood of certain singularities. In two examples we consider all the periods in and around the rigid limit, identifying the nontrivial ones in the limit as periods of a meromorphic form on the relevant Riemann surfaces. We show how the Kahler potential of the special Kahler manifold reduces to that of a rigid special Kahler manifold. We extensively make use of the structure of these Calabi-Yau manifolds as K3 fibrations, which is useful to obtain the periods even before the K3 degenerates to an ALE manifold in the limit. We study various methods to calculate the periods and their properties. The development of these methods is an important step to obtain exact results from supergravity on Calabi-Yau manifolds.

The rigid limit in special Kaehler geometry: From K3-fibrations to special Riemann surfaces: A detailed case study

BILLO', Marco;FRE', Pietro Giuseppe;PESANDO, Igor;
1998-01-01

Abstract

The limiting procedure of special Kahler manifolds to their rigid limit is studied for moduli spaces of Calabi-Yau manifolds in the neighbourhood of certain singularities. In two examples we consider all the periods in and around the rigid limit, identifying the nontrivial ones in the limit as periods of a meromorphic form on the relevant Riemann surfaces. We show how the Kahler potential of the special Kahler manifold reduces to that of a rigid special Kahler manifold. We extensively make use of the structure of these Calabi-Yau manifolds as K3 fibrations, which is useful to obtain the periods even before the K3 degenerates to an ALE manifold in the limit. We study various methods to calculate the periods and their properties. The development of these methods is an important step to obtain exact results from supergravity on Calabi-Yau manifolds.
1998
15
2083
2152
M. BILLO'; F. DENEF; P. FRE'; I. PESANDO; W. TROOST; A. VAN PROEYEN; D. ZANON
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/40404
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 24
social impact