In kittens, callosally projecting neurons were labeled by retrograde transport of FITC- (fluorescein isothiocyanate)- and TRITC- (tetramethylrhodamine isothiocyanate)-conjugated latex microspheres injected in two different visual areas (17, 17/18, 19, or postero-medial lateral suprasylvian; PMLS) at postnatal day 3. At postnatal day 57 more than 1200 labeled neurons in visual cortical areas were intracellularly injected with 3% lucifer yellow (LY) in perfusion-fixed slices of the contralateral hemisphere. The distribution of labeled neurons was charted, and LY-filled neurons were classified on the basis of their area and layer of location, and dendritic pattern. The dendritic arbors of 120 neurons were computer reconstructed. For the basal dendrites of supragranular pyramidal neurons a statistical analysis of number of nodes, internodal and terminal segment lengths, and total dendritic length was run relative to the area of location and axonal projection. Connections were stronger between homotopic than between heterotopic areas. Overall tangential and laminar distributions depended on the area injected. Qualitative morphological differences were found among callosally projecting neurons, related to the area of location, not to that of projection. In all projections from areas 17 and 18, pyramidal and spinous stellate neurons were found in supragranular layers. In contrast, spinous stellate neurons lacked in projections from area 19, 21a, PMLS and postero-lateral lateral suprasylvian (PLLS). In all areas, the infragranular neurons showed heterogeneous typology, but in PMLS no fusiform cells were found. Quantitative analysis of basal dendrites did not reveal significant differences in total dendritic length, terminal, or intermediate segment length among neurons in area 17 or 18, and this was related to whether they projected to contralateral areas 17-18 or PMLS. All injections produced exuberant labeling in area 17. No differences could be found between neurons in area 17 (with transient axons through the corpus callosum) and neurons near the 17/18 border (which maintain projections to the corpus callosum). In conclusion, morphology of callosally projecting neurons seems to relate more to intrinsic specificities in the cellular composition of each area than to the area of contralateral axonal projection or the fate of callosal axons.

Morphology of visual callosal neurons with different locations, contralateral targets or patterns of development.

VERCELLI, Alessandro;
1993-01-01

Abstract

In kittens, callosally projecting neurons were labeled by retrograde transport of FITC- (fluorescein isothiocyanate)- and TRITC- (tetramethylrhodamine isothiocyanate)-conjugated latex microspheres injected in two different visual areas (17, 17/18, 19, or postero-medial lateral suprasylvian; PMLS) at postnatal day 3. At postnatal day 57 more than 1200 labeled neurons in visual cortical areas were intracellularly injected with 3% lucifer yellow (LY) in perfusion-fixed slices of the contralateral hemisphere. The distribution of labeled neurons was charted, and LY-filled neurons were classified on the basis of their area and layer of location, and dendritic pattern. The dendritic arbors of 120 neurons were computer reconstructed. For the basal dendrites of supragranular pyramidal neurons a statistical analysis of number of nodes, internodal and terminal segment lengths, and total dendritic length was run relative to the area of location and axonal projection. Connections were stronger between homotopic than between heterotopic areas. Overall tangential and laminar distributions depended on the area injected. Qualitative morphological differences were found among callosally projecting neurons, related to the area of location, not to that of projection. In all projections from areas 17 and 18, pyramidal and spinous stellate neurons were found in supragranular layers. In contrast, spinous stellate neurons lacked in projections from area 19, 21a, PMLS and postero-lateral lateral suprasylvian (PLLS). In all areas, the infragranular neurons showed heterogeneous typology, but in PMLS no fusiform cells were found. Quantitative analysis of basal dendrites did not reveal significant differences in total dendritic length, terminal, or intermediate segment length among neurons in area 17 or 18, and this was related to whether they projected to contralateral areas 17-18 or PMLS. All injections produced exuberant labeling in area 17. No differences could be found between neurons in area 17 (with transient axons through the corpus callosum) and neurons near the 17/18 border (which maintain projections to the corpus callosum). In conclusion, morphology of callosally projecting neurons seems to relate more to intrinsic specificities in the cellular composition of each area than to the area of contralateral axonal projection or the fate of callosal axons.
1993
94
393
404
A. VERCELLI; INNOCENTI G.M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/40618
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact