In vertebrates, networks of capillary vessels supply tissues with nutrients. Capillary patterns are closely mimicked by endothelial cells cultured on basement membrane proteins that allow single randomly dispersed cells to self-organize into vascular networks. Here we provide a model including chemoattraction as the fundamental mechanism for cell-to-cell communication in order to identify key parameters in the complexity of the formation of vascular patterns. By flanking biological experiments, theoretical insights and numerical simulations, we provide strong evidence that endothelial cell number and the range of activity of a chemoattractant factor regulate vascular network formation and size. We propose a mechanism linking the scale of formed endothelial structures to the range of cell-to-cell interaction mediated by the release of chemoattractants.
Modeling the early stages of vascular network assembly.
SERINI, Guido;GIRAUDO, Enrico;BUSSOLINO, Federico
2003-01-01
Abstract
In vertebrates, networks of capillary vessels supply tissues with nutrients. Capillary patterns are closely mimicked by endothelial cells cultured on basement membrane proteins that allow single randomly dispersed cells to self-organize into vascular networks. Here we provide a model including chemoattraction as the fundamental mechanism for cell-to-cell communication in order to identify key parameters in the complexity of the formation of vascular patterns. By flanking biological experiments, theoretical insights and numerical simulations, we provide strong evidence that endothelial cell number and the range of activity of a chemoattractant factor regulate vascular network formation and size. We propose a mechanism linking the scale of formed endothelial structures to the range of cell-to-cell interaction mediated by the release of chemoattractants.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.