Human ageing is associated to a declining activity of the GH/IGF-I axis and to several changes in body composition, function and metabolism which show strict similarities with those of younger adults with pathological GH deficiency. The age-related changes of the GH/IGF-I axis activity are mainly dependent on age-related variations in the hypothalamic control of somatotroph function, which is also affected by changes in peripheral hormones and metabolic input. The term "somatopause" indicates the potential link between the age-related decline in GH and IGF-I levels and changes in body composition, structural functions and metabolism which characterise ageing. Physical exercise is an important environmental regulator of the GH/IGF-I axis activity. Increased physical fitness and regular training increase GH production in adults, while the GH response to aerobic or resistance exercise is reduced with age. In older subjects regular exercise has the potential to improve overall fitness and quality of life and is also associated to decreased morbidity and increased longevity. Similar effects are seen following GH therapy in adult deficiency. This assumption led to clinical trials focusing on rhGH and/or rhlGF-I as potential anabolic drug interventions in elderly subjects. To restore the activity of GH/IGF-I axis with anabolic, anti-ageing purposes, attention has been also paid to GH-releasing molecules such as GHRH, orally active synthetic GH-secretagogues (GHS) and, more recently, to the endogenous natural GHS, ghrelin, which exerts several important biological actions, including the regulation of metabolic balance and orexigenic effects. At present, however, there is no definite evidence that "frail" elderly subjects really benefit from restoring GH and IGF-I levels within the young adult range by treatment with rhGH, rhlGF-I, GHRH or GHS. In this article the alteration of the GH/IGF-I axis activity during ageing is revised taking into account the role of physical activity as a regulator of the axis function and considering the effects of the restoration of GH and IGF-I circulating levels on body composition and physical performance.
Ageing, growth hormone and physical performance.
LANFRANCO, Fabio;GIORDANO, Roberta;MACCARIO, Mauro;ARVAT, Emanuela
2003-01-01
Abstract
Human ageing is associated to a declining activity of the GH/IGF-I axis and to several changes in body composition, function and metabolism which show strict similarities with those of younger adults with pathological GH deficiency. The age-related changes of the GH/IGF-I axis activity are mainly dependent on age-related variations in the hypothalamic control of somatotroph function, which is also affected by changes in peripheral hormones and metabolic input. The term "somatopause" indicates the potential link between the age-related decline in GH and IGF-I levels and changes in body composition, structural functions and metabolism which characterise ageing. Physical exercise is an important environmental regulator of the GH/IGF-I axis activity. Increased physical fitness and regular training increase GH production in adults, while the GH response to aerobic or resistance exercise is reduced with age. In older subjects regular exercise has the potential to improve overall fitness and quality of life and is also associated to decreased morbidity and increased longevity. Similar effects are seen following GH therapy in adult deficiency. This assumption led to clinical trials focusing on rhGH and/or rhlGF-I as potential anabolic drug interventions in elderly subjects. To restore the activity of GH/IGF-I axis with anabolic, anti-ageing purposes, attention has been also paid to GH-releasing molecules such as GHRH, orally active synthetic GH-secretagogues (GHS) and, more recently, to the endogenous natural GHS, ghrelin, which exerts several important biological actions, including the regulation of metabolic balance and orexigenic effects. At present, however, there is no definite evidence that "frail" elderly subjects really benefit from restoring GH and IGF-I levels within the young adult range by treatment with rhGH, rhlGF-I, GHRH or GHS. In this article the alteration of the GH/IGF-I axis activity during ageing is revised taking into account the role of physical activity as a regulator of the axis function and considering the effects of the restoration of GH and IGF-I circulating levels on body composition and physical performance.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.