The contact with the postsynaptic target induces structural and functional modifications in the serotonergic cell C1 of Helix pomatia. In previous studies we have found that the presence of a non-physiological target down-regulates the number of presynaptic varicosities formed by cultured C1 neurons and has a strong inhibitory effect on the action potential-evoked Ca(2+) influx and neurotransmitter release at C1 terminals. Since a large body of experimental evidence implicates the synapsins in the development and functional maturation of synaptic connections, we have investigated whether the injection of exogenous synapsin I into the presynaptic neuron C1 could affect the inhibitory effect of the wrong target on neurotransmitter release. C1 neurons were cultured with the wrong target neuron C3 for three to five days and then injected with either dephosphorylated or Ca(2+)/calmodulin-dependent protein kinase II-phosphorylated Cy3-labeled synapsin I. The subcellular distribution of exogenous synapsin I, followed by fluorescence videomicroscopy, revealed that only synapsin I phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II diffused in the cytoplasm and reached the terminal arborizations of the axon, while the dephosphorylated form did not diffuse beyond the cell body. Evoked neurotransmitter release was measured during C1 stimulation using a freshly dissociated neuron B2 (sniffer) micromanipulated in close contact with the terminals of C1. A three-fold increase in the amplitude of the sniffer depolarization with respect to the pre-injection amplitude (190+/-29% increase, n=10, P<0.006) was found 5 min after injection of Ca(2+)/calmodulin-dependent protein kinase II-phosphorylated synapsin I that lasted for about 30 min. No significant change was observed after injection of buffer or dephosphorylated synapsin I.These data indicate that the presence of synapsin I induces a fast increase in neurotransmitter release that overcomes the inhibitory effect of the non-physiological target and suggest that the expression of synapsins may play a role in the modulation of synaptic strength and neural connectivity.

Intracellular injection of synapsin I induces neurotransmitter release in C1 neurons of Helix pomatia contacting a wrong target.

FIUMARA, Ferdinando;MONTAROLO, Pier Giorgio;GHIRARDI, Mirella
2001-01-01

Abstract

The contact with the postsynaptic target induces structural and functional modifications in the serotonergic cell C1 of Helix pomatia. In previous studies we have found that the presence of a non-physiological target down-regulates the number of presynaptic varicosities formed by cultured C1 neurons and has a strong inhibitory effect on the action potential-evoked Ca(2+) influx and neurotransmitter release at C1 terminals. Since a large body of experimental evidence implicates the synapsins in the development and functional maturation of synaptic connections, we have investigated whether the injection of exogenous synapsin I into the presynaptic neuron C1 could affect the inhibitory effect of the wrong target on neurotransmitter release. C1 neurons were cultured with the wrong target neuron C3 for three to five days and then injected with either dephosphorylated or Ca(2+)/calmodulin-dependent protein kinase II-phosphorylated Cy3-labeled synapsin I. The subcellular distribution of exogenous synapsin I, followed by fluorescence videomicroscopy, revealed that only synapsin I phosphorylated by Ca(2+)/calmodulin-dependent protein kinase II diffused in the cytoplasm and reached the terminal arborizations of the axon, while the dephosphorylated form did not diffuse beyond the cell body. Evoked neurotransmitter release was measured during C1 stimulation using a freshly dissociated neuron B2 (sniffer) micromanipulated in close contact with the terminals of C1. A three-fold increase in the amplitude of the sniffer depolarization with respect to the pre-injection amplitude (190+/-29% increase, n=10, P<0.006) was found 5 min after injection of Ca(2+)/calmodulin-dependent protein kinase II-phosphorylated synapsin I that lasted for about 30 min. No significant change was observed after injection of buffer or dephosphorylated synapsin I.These data indicate that the presence of synapsin I induces a fast increase in neurotransmitter release that overcomes the inhibitory effect of the non-physiological target and suggest that the expression of synapsins may play a role in the modulation of synaptic strength and neural connectivity.
2001
104
271
280
FIUMARA F; ONOFRI F; BENFENATI F; MONTAROLO P; GHIRARDI M
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/41653
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 24
  • ???jsp.display-item.citation.isi??? ND
social impact