Postsynaptic currents were studied by whole cell recordings in visually identified large neurons of the deep cerebellar nuclei (DCN) in slices of 4- to 11-day-old mice. Spontaneous postsynaptic currents were abolished by the GABA(A) receptor antagonist bicuculline and had a single-exponential decay with a mean time constant of 13.6 +/- 3.2 (SD) ms. Excitatory postsynaptic currents (EPSCs) were evoked in 48/56 neurons recorded. The addition of AMPA and N-methyl-D-aspartate (NMDA) receptor antagonists together completely abolished all synaptic responses. In 1 mM [Mg(2+)](o) and at a holding potential of -60 mV, the peak amplitude of the NMDA component of the EPSC (NMDA-EPSC) was 83.2 +/- 21.2% of the AMPA component (AMPA-EPSC). This indicates that in DCN neurons, at a physiological [Mg(2+)](o) and at the resting membrane potential, NMDA receptors contribute to the synaptic signal. AMPA-EPSCs had a linear current-voltage relationship with a reversal potential of +2.3 +/- 0.4 mV and a single-exponential decay with a voltage-dependent time constant that at -60 mV was 7.1 +/- 3.3 ms. In 10 microM glycine and 1 mM [Mg(2+)](o), the I-V relationship of NMDA-EPSCs had a reversal potential of -0.5 +/- 3.3 mV and a maximal inward current at -33.4 +/- 5.8 mV. The apparent dissociation constant (K(D)) of Mg(2+) for the NMDA receptor-channel at -60 mV, measured by varying [Mg(2+)](o), was 135.5 +/- 55.3 microM, and when measured by fitting the I-V curves with a theoretical function, it was 169.9 +/- 119.5 microM. Thus in the DCN, NMDA receptors have a sensitivity to Mg(2+) that corresponds to subunits that are weakly blocked by this ion (epsilon 3 and epsilon 4) of which the DCN express epsilon 4. NMDA-EPSCs had a double-exponential decay with voltage-dependent time constants that at -60 mV were 20.2 +/- 8.9 and 136.4 +/- 62.8 ms. At positive voltages, the time constants were slower and their contributions were about equal, while in the negative slope conductance region of the I-V curve, the faster time constant became predominant, conferring faster kinetics to the EPSC. The weak sensitivity to Mg(2+) of NMDA receptors, together with a relatively fast kinetics, provide DCN neurons with strong excitatory inputs in which fast dynamic signals are relatively well preserved.

Postsynaptic currents in deep cerebellar nuclei.

TEMPIA, Filippo
2001-01-01

Abstract

Postsynaptic currents were studied by whole cell recordings in visually identified large neurons of the deep cerebellar nuclei (DCN) in slices of 4- to 11-day-old mice. Spontaneous postsynaptic currents were abolished by the GABA(A) receptor antagonist bicuculline and had a single-exponential decay with a mean time constant of 13.6 +/- 3.2 (SD) ms. Excitatory postsynaptic currents (EPSCs) were evoked in 48/56 neurons recorded. The addition of AMPA and N-methyl-D-aspartate (NMDA) receptor antagonists together completely abolished all synaptic responses. In 1 mM [Mg(2+)](o) and at a holding potential of -60 mV, the peak amplitude of the NMDA component of the EPSC (NMDA-EPSC) was 83.2 +/- 21.2% of the AMPA component (AMPA-EPSC). This indicates that in DCN neurons, at a physiological [Mg(2+)](o) and at the resting membrane potential, NMDA receptors contribute to the synaptic signal. AMPA-EPSCs had a linear current-voltage relationship with a reversal potential of +2.3 +/- 0.4 mV and a single-exponential decay with a voltage-dependent time constant that at -60 mV was 7.1 +/- 3.3 ms. In 10 microM glycine and 1 mM [Mg(2+)](o), the I-V relationship of NMDA-EPSCs had a reversal potential of -0.5 +/- 3.3 mV and a maximal inward current at -33.4 +/- 5.8 mV. The apparent dissociation constant (K(D)) of Mg(2+) for the NMDA receptor-channel at -60 mV, measured by varying [Mg(2+)](o), was 135.5 +/- 55.3 microM, and when measured by fitting the I-V curves with a theoretical function, it was 169.9 +/- 119.5 microM. Thus in the DCN, NMDA receptors have a sensitivity to Mg(2+) that corresponds to subunits that are weakly blocked by this ion (epsilon 3 and epsilon 4) of which the DCN express epsilon 4. NMDA-EPSCs had a double-exponential decay with voltage-dependent time constants that at -60 mV were 20.2 +/- 8.9 and 136.4 +/- 62.8 ms. At positive voltages, the time constants were slower and their contributions were about equal, while in the negative slope conductance region of the I-V curve, the faster time constant became predominant, conferring faster kinetics to the EPSC. The weak sensitivity to Mg(2+) of NMDA receptors, together with a relatively fast kinetics, provide DCN neurons with strong excitatory inputs in which fast dynamic signals are relatively well preserved.
2001
85
323
331
Anchisi, D.; Scelfo, B.; Tempia, Filippo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/42013
Citazioni
  • ???jsp.display-item.citation.pmc??? 28
  • Scopus 57
  • ???jsp.display-item.citation.isi??? 55
social impact