New cells are continuously added to the rodent olfactory bulb (OB), throughout development and in adults. These cells migrate tangentially from the subventricular zone along the rostral migratory stream to the OB, where they migrate radically from the center to periphery of the OB. Although different modalities of radial migration have been described in other brain regions, the mechanisms governing radial migration in the OB are still mostly unknown. Here, we identify a new modality of migration in which neuronal precursors migrate along blood vessels toward their destination. Our results show that half of the radially migrating cells associate with the vasculature in the granule cell layer of the OB, and in vivo time-lapse imaging demonstrates that they use blood vessels as a scaffold for their migration through an interaction with the extracellular matrix and perivascular astrocyte end feet. The present data provide evidence that a new modality of migration, vasophilic migration, is occurring in the adult brain and reveals a novel role of brain vasculature.

Blood vessels form a scaffold for neuroblast migration in the adult olfactory bulb

BOVETTI, Serena;BOVOLIN, Patrizia;PERROTEAU, Isabelle;
2007-01-01

Abstract

New cells are continuously added to the rodent olfactory bulb (OB), throughout development and in adults. These cells migrate tangentially from the subventricular zone along the rostral migratory stream to the OB, where they migrate radically from the center to periphery of the OB. Although different modalities of radial migration have been described in other brain regions, the mechanisms governing radial migration in the OB are still mostly unknown. Here, we identify a new modality of migration in which neuronal precursors migrate along blood vessels toward their destination. Our results show that half of the radially migrating cells associate with the vasculature in the granule cell layer of the OB, and in vivo time-lapse imaging demonstrates that they use blood vessels as a scaffold for their migration through an interaction with the extracellular matrix and perivascular astrocyte end feet. The present data provide evidence that a new modality of migration, vasophilic migration, is occurring in the adult brain and reveals a novel role of brain vasculature.
2007
27(22)
5976
5980
BOVETTI S; HSIEH YC; BOVOLIN P; I. PERROTEAU; KAZUNORI T; PUCHE AC
File in questo prodotto:
File Dimensione Formato  
Bovetti, J Neurosci 2007.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 279 kB
Formato Adobe PDF
279 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/42076
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 185
  • ???jsp.display-item.citation.isi??? 169
social impact