Angiotensin-converting enzyme (ACE) plays a pivotal role in the renin-angiotensin system (RAS) and ACE-inhibitors are widely used in several clinical conditions, including hypertension and heart failure. Recently, a homologue of ACE, ACE(2) has been discovered. Both ACE and ACE(2) are emerging as key enzymes of the RAS, where ACE(2) may play a role as negative regulator of ACE. Moreover, ACE(2) appears to be an important enzyme outside the classical RAS, as it hydrolyzes apelins, dynorphin A 1-13, des-Arg-bradykinin and other peptide substrates. The precise interplay between tissue ACE, ACE(2), and their substrates and by-products are presently still unclear.ACE-inhibitors reduce angiotensin II formation and bradykinin degradation, but do not inhibit ACE(2) activity. Moreover, ACE-inhibitors differ in their affinity for tissue ACE, and it has been suggested that tissue ACE affinity might be responsible for some of the beneficial properties of these drugs. ACE-inhibitors also increase nitric oxide availability, and activate several kinases that may regulate protein synthesis by interacting with the nucleus of the cells (outside-in signaling). The outside-in signaling may also be activated by bradykinin itself. Although, the precise significance of the outside-in signaling is still unclear, this new role of ACE-inhibitors may represent a discriminant factor versus angiotensin II receptors antagonists.This mini review will summarize some new aspects concerning the recently discovered biological functions of RAS and in particular of ACE, ACE(2) and ACE-inhibitors in cardiovascular system.
Rethinking the renin-angiotensin system and its role in cardiovascular regulation.
PAGLIARO, Pasquale;PENNA, Claudia
2005-01-01
Abstract
Angiotensin-converting enzyme (ACE) plays a pivotal role in the renin-angiotensin system (RAS) and ACE-inhibitors are widely used in several clinical conditions, including hypertension and heart failure. Recently, a homologue of ACE, ACE(2) has been discovered. Both ACE and ACE(2) are emerging as key enzymes of the RAS, where ACE(2) may play a role as negative regulator of ACE. Moreover, ACE(2) appears to be an important enzyme outside the classical RAS, as it hydrolyzes apelins, dynorphin A 1-13, des-Arg-bradykinin and other peptide substrates. The precise interplay between tissue ACE, ACE(2), and their substrates and by-products are presently still unclear.ACE-inhibitors reduce angiotensin II formation and bradykinin degradation, but do not inhibit ACE(2) activity. Moreover, ACE-inhibitors differ in their affinity for tissue ACE, and it has been suggested that tissue ACE affinity might be responsible for some of the beneficial properties of these drugs. ACE-inhibitors also increase nitric oxide availability, and activate several kinases that may regulate protein synthesis by interacting with the nucleus of the cells (outside-in signaling). The outside-in signaling may also be activated by bradykinin itself. Although, the precise significance of the outside-in signaling is still unclear, this new role of ACE-inhibitors may represent a discriminant factor versus angiotensin II receptors antagonists.This mini review will summarize some new aspects concerning the recently discovered biological functions of RAS and in particular of ACE, ACE(2) and ACE-inhibitors in cardiovascular system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.