Deep inelastic scattering and its diffractive component, ep→e′γ*p→e′XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb−1. The measurement covers a wide range in the γ*p c.m. energy W (37–245 GeV), photon virtuality Q2 (2.2–80 GeV2) and mass MX (0.28–35 GeV). The diffractive cross section for MX>2 GeV rises strongly with W; the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to γ*p scattering. Above MX of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(β, xIP, Q2), of the proton. For fixed β, the Q2 dependence of xIPF2D(3) changes with xIP in violation of Regge factorisation. For fixed xIP, xIPF2D(3) rises as β→0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.

Study of deep inelastic inclusive and diffractive scattering with the ZEUS forward plug calorimeter

COSTA, Marco;FERRERO, Maria Italia;MONACO, Vincenzo;SACCHI, Roberto;SOLANO, Ada Maria;
2005-01-01

Abstract

Deep inelastic scattering and its diffractive component, ep→e′γ*p→e′XN, have been studied at HERA with the ZEUS detector using an integrated luminosity of 4.2 pb−1. The measurement covers a wide range in the γ*p c.m. energy W (37–245 GeV), photon virtuality Q2 (2.2–80 GeV2) and mass MX (0.28–35 GeV). The diffractive cross section for MX>2 GeV rises strongly with W; the rise is steeper with increasing Q2. The latter observation excludes the description of diffractive deep inelastic scattering in terms of the exchange of a single pomeron. The ratio of diffractive to total cross section is constant as a function of W, in contradiction to the expectation of Regge phenomenology combined with a naive extension of the optical theorem to γ*p scattering. Above MX of 8 GeV, the ratio is flat with Q2, indicating a leading-twist behaviour of the diffractive cross section. The data are also presented in terms of the diffractive structure function, F2D(3)(β, xIP, Q2), of the proton. For fixed β, the Q2 dependence of xIPF2D(3) changes with xIP in violation of Regge factorisation. For fixed xIP, xIPF2D(3) rises as β→0, the rise accelerating with increasing Q2. These positive scaling violations suggest substantial contributions of perturbative effects in the diffractive DIS cross section.
2005
713
3
80
http://dx.doi.org/10.1016/j.nuclphysb.2005.02.001
High Energy Physics; HERA; ZEUS Collaboration
Chekanov S ; Derrick M ; Magill S ; Miglioranzi S ; Musgrave B ; Repond J ; Yoshida R ; Mattingly MCK ; Pavel N ; Molina AGY ; Antonioli P ; Bari G ; Basile M ; Bellagamba L ; Boscherini D ; Bruni A ; Bruni G ; Romeo GC ; Cifarelli L ; Cindolo F ; Contin A ; Corradi M ; De Pasquale S ; Giusti P ; Iacobucci G ; Margotti A ; Montanari A ; Nania R ; Palmonari F ; Pesci A ; Polini A ; Rinaldi L ; Sartorelli G ; Zichichi A ; Aghuzumtsyan G ; Bartsch D ; Brock I ; Goers S ; Hartmann H ; Hilger E ; Irrgang P ; Jakob HP ; Kind O ; Meyer U ; Paul E ; Rautenberg J ; Renner R ; Voss KC ; Wang M ; Wlasenko M ; Bailey DS ; Brook NH ; Cole JE ; Heath GP ; Namsoo T ; Robins S ; Capua M ; Mastroberardino A ; Schioppa M ; Susinno G ; Tassi E ; Kim JY ; Ma KJ ; Helbich M ; Ning Y ; Ren Z ; Schmidke WB ; Sciulli E ; Chwastowski J ; Eskreys A ; Figiel J ; Galas A ; Olkiewicz K ; Stopa P ; Szuba D ; Zawiejski L ; Adamczyk L ; Bold T ; Grabowska-Bold I ; Kisielewska D ; Kowal AM ; Lukasik J ; Przybycien M ; Suszycki L ; Szuba J ; Kotanski A ; Slominski W ; Adler V ; Behrens U ; Bloch I ; Borras K ; Cassel DG ; Drews G ; Fourletova J ; Geiser A ; Gladkov D ; Goebel F ; Gottlicher P ; Diaz RG ; Gutsche O ; Haas T ; Hain W ; Horn C ; Kahle B ; Kasemann M ; Kotz U ; Kowalski H ; Kramberger G ; Lelas D ; Lim H ; Lohr B ; Mankel R ; Martinez M ; Melzer-Pellmann IA ; Nguyen CN ; Notz D ; Nuncio-Quiroz AE ; Raval A ; Santamarta R ; Schneekloth U ; Stosslein U ; Wolf G ; Youngman C ; Zeuner W ; Schlenstedt S ; Barbagli G ; Gallo E ; Genta C ; Pelfer PG ; Bamberger A ; Benen A ; Karstens F ; Dobur D ; Vlasov NN ; Bussey PJ ; Doyle AT ; Ferr;o J ; Hamilton J ; Hanlon S ; Saxon DH ; Skillicorn IO ; Gialas I ; Carli T ; Gosau T ; Holm U ; Krumnack N ; Lohrmann E ; Milite M ; Salehi H ; Schleper P ; Schorner-Sadenius T ; Stonjek S ; Wichmann K ; Wick K ; Ziegler A ; Ziegler A ; Collins-Tooth C ; Foudas C ; Fry C ; Goncalo R ; Long KR ; Tapper AD ; Kataoka M ; Nagano K ; Tokushuku K ; Yamada S ; Yamazakai Y ; Barakbaev AN ; Boos EG ; Pokrovskiy NS ; Zhautykov BO ; Son D ; de Favereau J ; Piotrzkowski K ; Barreiro F ; Glasman C ; Gonzalez O ; Jimenez M ; Labarga L ; del Peso J ; Terron J ; Zambrana M ; Barbi M ; Corriveau F ; Liu C ; Padhi S ; Plamondon M ; Stairs DG ; Walsh R ; Zhou C ; Tsurugai T ; Antonov A ; Danilov P ; Dolgoshein BA ; Sosnovtsev V ; Stifutkin A ; Suchkov S ; Dementiev RK ; Ermolov R ; Gladilin LK ; Katkov II ; Khein LA ; Korzhavina IA ; Kuzmin VA ; Levchenko BB ; Lukina OY ; Proskuryakov AS ; Shcheglova LM ; Zotkin DS ; Zotkin SA ; Abt I ; Buttner C ; Caldwell A ; Liu X ; Sutiak J ; Coppola N ; Grigorescu G ; Grijpink S ; Keramidas A ; Koffeman E ; Kooijman P ; Maddox E ; Pellegrino A ; Schagen S ; Tiecke H ; Vazquez M ; Wiggers L ; de Wolf E ; Brummer N ; Bylsma B ; Durkin LS ; Ling TY ; Allfrey PD ; Bell MA ; Cooper-Sarkar AM ; Cottrell A ; Devenish RCE ; Foster B ; Grzelak G ; Gwenlan C ; Kohno T ; Patel S ; Straub PB ; Walczak R ; Bellan P ; Bertolin A ; Brugnera R ; Carlin R ; Ciesielski R ; Dal Corso F ; Dusini S ; Garfagnini A ; Limentani S ; Longhin A ; Stanco L ; Turcato M ; Heaphy EA ; Metlica F ; Oh BY ; Whitmore JJ ; Iga Y ; D'Agostini G ; Marini G ; Nigro A ; Hart JC ; Abramowicz H ; Gabareen A ; Groys M ; Kananov S ; Kreisel A ; Levy A ; Kuze M ; Kagawa S ; Tawara T ; Hamatsu R ; Kaji H ; Kitamura S ; Matsuzawa K ; Ota O ; Ri YD ; Costa M ; Ferrero MI ; Monaco V ; Sacchi R ; Solano A ; Arneodo M ; Ruspa M ; Fourletov S ; Koop T ; Martin JF ; Mirea A ; Butterworth JM ; Hall-Wilton R ; Jones TW ; Loizides JH ; Sutton MR ; Targett-Adams C ; Wing M ; Ciborowski J ; Kulinski P ; Luzniak P ; Malka J ; Nowak RJ ; Pawlak JM ; Sztuk J ; Tymieniecka T ; Tyszkiewicz A ; Ukleja A ; Ukleja J ; Zarnecki AF ; Adamus M ; Plucinski P ; Eisenberg Y ; Hochman D ; Karshon U ; Lightwood MS ; Everett A ; Kcira D ; Lammers S ; Li L ; Reeder DD ; Rosin M ; Ryan P ; Savin AA ; Smith WH ; Dhawan S ; Bhadra S ; Catterall CD ; Cui Y ; Hartner G ; Menary S ; Noor U ; Soares M ; St;age J ; Whyte J
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0550321305001148-main.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 2.75 MB
Formato Adobe PDF
2.75 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/42792
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 135
  • ???jsp.display-item.citation.isi??? 106
social impact