Ever since the groundbreaking work of Ramon y Cajal, the cerebellar cortex has been recognized as one of the most regularly structured and wired parts of the brain formed by a rather limited set of distinct cells. Its rather protracted course of development, which persists well into postnatal life, the availability of multiple natural mutants, and, more recently, the availability of distinct molecular genetic tools to identify and manipulate discrete cell types have suggested the cerebellar cortex as an excellent model to understand the formation and working of the central nervous system. However, the formulation of a unifying model of cerebellar function has so far proven to be a most cantankerous problem, not least because our understanding of the internal cerebellar cortical circuitry is clearly spotty. Recent research has highlighted the fact that cerebellar cortical interneurons are a quite more diverse and heterogeneous class of cells than generally appreciated, and have provided novel insights into the mechanisms that underpin the development and histogenetic integration of these cells. Here, we provide a short overview of cerebellar cortical interneuron diversity, and we summarize some recent results that are hoped to provide a primer on current understanding of cerebellar biology

Besides Purkinje cells and granule neurons: an appraisal of the cell biology of the interneurons of the cerebellar cortex

ROSSI, Ferdinando;
2008-01-01

Abstract

Ever since the groundbreaking work of Ramon y Cajal, the cerebellar cortex has been recognized as one of the most regularly structured and wired parts of the brain formed by a rather limited set of distinct cells. Its rather protracted course of development, which persists well into postnatal life, the availability of multiple natural mutants, and, more recently, the availability of distinct molecular genetic tools to identify and manipulate discrete cell types have suggested the cerebellar cortex as an excellent model to understand the formation and working of the central nervous system. However, the formulation of a unifying model of cerebellar function has so far proven to be a most cantankerous problem, not least because our understanding of the internal cerebellar cortical circuitry is clearly spotty. Recent research has highlighted the fact that cerebellar cortical interneurons are a quite more diverse and heterogeneous class of cells than generally appreciated, and have provided novel insights into the mechanisms that underpin the development and histogenetic integration of these cells. Here, we provide a short overview of cerebellar cortical interneuron diversity, and we summarize some recent results that are hoped to provide a primer on current understanding of cerebellar biology
2008
130
601
615
Schilling K; Oberdick J; Rossi F; Baader S
File in questo prodotto:
File Dimensione Formato  
Schilling et al HCB 2008.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 621.13 kB
Formato Adobe PDF
621.13 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/43209
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 84
  • ???jsp.display-item.citation.isi??? 66
social impact