This work was performed to elucidate further the main cellular events underlying the protective effect of ischaemic preconditioning in an in vivo rat liver model of 90 min ischaemia followed by 30 min reperfusion. A significant attenuation of the various aspects of post-ischaemic injury, namely necrosis and the levels of hydrogen peroxide and 5- and 15-hydroperoxyeicosatetraenoic acids, was afforded by the prior application of a short cycle of ischaemia/reperfusion (10 + 10 min) or when rats were previously treated with gadolinium chloride. However, when preconditioning was applied on Kupffer cell-depleted livers, no additional level of ischaemic tolerance was obtained. In terms of cellular pathology, this result could be suggestive of Kupffer cells as the target of the preconditioning phenomenon during the warm ischaemia/reperfusion injury. Accordingly, modulation of Kupffer cell activity was associated with a well-preserved hepatocyte integrity, together with low levels of pro-oxidant generation during reperfusion. As activated Kupffer cells can generate and release potentially toxic substances, their modulation by ischaemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.
Ischaemic preconditioning modulates the activity of Kupffer cells during in vivo reperfusion injury of rat liver
ARAGNO, Manuela;POLI, Giuseppe;CUTRIN, Juan Carlos
2003-01-01
Abstract
This work was performed to elucidate further the main cellular events underlying the protective effect of ischaemic preconditioning in an in vivo rat liver model of 90 min ischaemia followed by 30 min reperfusion. A significant attenuation of the various aspects of post-ischaemic injury, namely necrosis and the levels of hydrogen peroxide and 5- and 15-hydroperoxyeicosatetraenoic acids, was afforded by the prior application of a short cycle of ischaemia/reperfusion (10 + 10 min) or when rats were previously treated with gadolinium chloride. However, when preconditioning was applied on Kupffer cell-depleted livers, no additional level of ischaemic tolerance was obtained. In terms of cellular pathology, this result could be suggestive of Kupffer cells as the target of the preconditioning phenomenon during the warm ischaemia/reperfusion injury. Accordingly, modulation of Kupffer cell activity was associated with a well-preserved hepatocyte integrity, together with low levels of pro-oxidant generation during reperfusion. As activated Kupffer cells can generate and release potentially toxic substances, their modulation by ischaemic preconditioning could help to provide new surgical and/or pharmacological strategies to protect the liver against reperfusion damage.File | Dimensione | Formato | |
---|---|---|---|
CBF2003.pdf
Accesso aperto
Tipo di file:
POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione
85.27 kB
Formato
Adobe PDF
|
85.27 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.