Mitral and tufted cells of the olfactory bulb receive strong gamma-aminobutyric acid (GABA)-ergic input and express GABA(A) receptors containing the alpha1 or alpha3 subunit. The distribution of these subunits was investigated in rats via multiple immunofluorescence and confocal microscopy, by using gephyrin as a marker of GABAergic synapses. A prominent immunoreactivity was detected throughout the external plexiform layer (EPL) and glomerular layer (GL). However, although staining for the alpha1 subunit was uniform throughout the EPL, that of the alpha3 subunit was most intense in the outer one-third of this layer. All mitral cells were positive for the alpha1 subunit. In contrast, the alpha3 subunit was restricted to a subpopulation of mitral cells, many of which also expressed calretinin. Likewise, external tufted cells could be subdivided into distinct groups, either singly labeled for the alpha1 or alpha3 subunit or doubly labeled. At the subcellular level, staining for the alpha1 and alpha3 subunits was punctate, forming clusters partially colocalized with gephyrin. However, many alpha1- and alpha3-positive clusters lacked gephyrin, suggesting the existence of either nonsynaptic GABA(A) receptor clusters or synaptic receptors not associated with gephyrin. Quantitative analysis of colocalization among the three markers in the inner EPL, outer EPL, and GL revealed considerable heterogeneity, suggestive of a differential organization of GABA(A) receptor subtypes in the apical and basal dendrites of mitral and tufted cells. Together these results reveal a complex subunit organization of GABA(A) receptors in the olfactory bulb and suggest that mitral and tufted cells participate in different synaptic circuits controlled by distinct GABA(A) receptor subtypes.

Heterogeneity of gamma-aminobutyric acid type A receptors in mitral and tufted cells of the rat main olfactory bulb

PANZANELLI, Patrizia;SASSOE' POGNETTO, Marco
2005-01-01

Abstract

Mitral and tufted cells of the olfactory bulb receive strong gamma-aminobutyric acid (GABA)-ergic input and express GABA(A) receptors containing the alpha1 or alpha3 subunit. The distribution of these subunits was investigated in rats via multiple immunofluorescence and confocal microscopy, by using gephyrin as a marker of GABAergic synapses. A prominent immunoreactivity was detected throughout the external plexiform layer (EPL) and glomerular layer (GL). However, although staining for the alpha1 subunit was uniform throughout the EPL, that of the alpha3 subunit was most intense in the outer one-third of this layer. All mitral cells were positive for the alpha1 subunit. In contrast, the alpha3 subunit was restricted to a subpopulation of mitral cells, many of which also expressed calretinin. Likewise, external tufted cells could be subdivided into distinct groups, either singly labeled for the alpha1 or alpha3 subunit or doubly labeled. At the subcellular level, staining for the alpha1 and alpha3 subunits was punctate, forming clusters partially colocalized with gephyrin. However, many alpha1- and alpha3-positive clusters lacked gephyrin, suggesting the existence of either nonsynaptic GABA(A) receptor clusters or synaptic receptors not associated with gephyrin. Quantitative analysis of colocalization among the three markers in the inner EPL, outer EPL, and GL revealed considerable heterogeneity, suggestive of a differential organization of GABA(A) receptor subtypes in the apical and basal dendrites of mitral and tufted cells. Together these results reveal a complex subunit organization of GABA(A) receptors in the olfactory bulb and suggest that mitral and tufted cells participate in different synaptic circuits controlled by distinct GABA(A) receptor subtypes.
2005
484
121
131
PANZANELLI P; PERAZZINI AZ; FRITSCHY JM; SASSOÈ-POGNETTO M
File in questo prodotto:
File Dimensione Formato  
Panzanelli et al_2005_J_Comp_Neurol_484_121.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 774.48 kB
Formato Adobe PDF
774.48 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/43380
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 33
social impact