Doxorubicin efficacy in cancer therapy is hampered by the dose-dependent side effects, which may be overcome by reducing the drug's dose and increasing its efficacy. In the present work, we suggest that the activation of the nuclear factor-kappaB (NF-kappaB) pathway and of nitric-oxide (NO) synthase increases the doxorubicin efficacy in human colon cancer HT29 cells. To induce NF-kappaB, we took into account the effect of doxorubicin itself and of the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor simvastatin; as NF-kappaB inhibitors, we chose the sesquiterpene lactones parthenolide and artemisinin. Simvastatin increased the NF-kappaB activity and NO synthesis, elicited the tyrosine nitration of the multidrug resistance-related protein 3, and enhanced the doxorubicin intracellular accumulation and cytotoxicity. Simvastatin potentiated the effect of doxorubicin on the NF-kappaB pathway and the inducible NO synthase expression. The effects of simvastatin were due to the inhibition of the small G-protein RhoA and of its effector Rho kinase. Parthenolide and artemisinin prevented all of the statin effects by inducing RhoA/Rho kinase activation. On the other hand, they did not reduce the NF-kappaB translocation and doxorubicin intracellular content when RhoA was silenced by small interfering RNA (siRNA). It is interesting that RhoA siRNA was sufficient to increase NF-kappaB translocation, NO synthase activity, doxorubicin accumulation, and cytotoxicity also in non-stimulated cells. Our results suggest that artemisinin, a widely used antimalarial drug, may impair the response to doxorubicin in colon cancer cells; on the contrary, simvastatin and RhoA siRNA may represent future therapeutic approaches to improve doxorubicin efficacy, reducing the risk of doxorubicin-dependent adverse effects.

Activation of nuclear factor-kappa B pathway by simvastatin and RhoA silencing increases doxorubicin cytotoxicity in human colon cancer HT29 cells

RIGANTI, Chiara;DOUBLIER, Sophie Michelle;COSTAMAGNA, Costanzo;ALDIERI, Elisabetta;PESCARMONA, Gianpiero;GHIGO, Dario Antonio;BOSIA, Amalia
2008-01-01

Abstract

Doxorubicin efficacy in cancer therapy is hampered by the dose-dependent side effects, which may be overcome by reducing the drug's dose and increasing its efficacy. In the present work, we suggest that the activation of the nuclear factor-kappaB (NF-kappaB) pathway and of nitric-oxide (NO) synthase increases the doxorubicin efficacy in human colon cancer HT29 cells. To induce NF-kappaB, we took into account the effect of doxorubicin itself and of the 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor simvastatin; as NF-kappaB inhibitors, we chose the sesquiterpene lactones parthenolide and artemisinin. Simvastatin increased the NF-kappaB activity and NO synthesis, elicited the tyrosine nitration of the multidrug resistance-related protein 3, and enhanced the doxorubicin intracellular accumulation and cytotoxicity. Simvastatin potentiated the effect of doxorubicin on the NF-kappaB pathway and the inducible NO synthase expression. The effects of simvastatin were due to the inhibition of the small G-protein RhoA and of its effector Rho kinase. Parthenolide and artemisinin prevented all of the statin effects by inducing RhoA/Rho kinase activation. On the other hand, they did not reduce the NF-kappaB translocation and doxorubicin intracellular content when RhoA was silenced by small interfering RNA (siRNA). It is interesting that RhoA siRNA was sufficient to increase NF-kappaB translocation, NO synthase activity, doxorubicin accumulation, and cytotoxicity also in non-stimulated cells. Our results suggest that artemisinin, a widely used antimalarial drug, may impair the response to doxorubicin in colon cancer cells; on the contrary, simvastatin and RhoA siRNA may represent future therapeutic approaches to improve doxorubicin efficacy, reducing the risk of doxorubicin-dependent adverse effects.
2008
74
476
484
3-hydroxy-3-methylglutaryl coenzyme A; nuclear factor kappa B; inhibitor of kappa B; IkB kinase; nitric oxide; nitric oxide synthase; P-glycoprotein; multidrug resistance-related protein 3; ATPbinding cassette; small interfering RNA
Riganti C; Doublier S; Costamagna C; Aldieri E; Pescarmona G; Ghigo D; Bosia A
File in questo prodotto:
File Dimensione Formato  
Riganti_MolPharmacol_2008.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 472.18 kB
Formato Adobe PDF
472.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/46378
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 55
social impact