The aim of the present work is to present a simple model for damage progression and Acoustic Emission that correctly accounts for energy dissipation due to the formation of micro-cracks and the creation of surfaces in a material undergoing external loading, and thus to derive the scaling behaviour observed in experiments. To do this, energy balance considerations are included in a Fibre Bundle Model approach. The model predictions are first illustrated in a uniaxial test under quasistatic loading conditions. Numerical results are then compared to experimental data relative to tests on masonry elements of various sizes subjected compression. The scaling properties of Acoustic Emission under the chosen energy balance assumptions is analyzed and compared to previous numerical and experimental results in the literature. Power-law scaling behaviour is found with respect to specimen dimensions.

Mesoscopic modeling of Acoustic Emission through an energetic approach

BOSIA, Federico;
2008-01-01

Abstract

The aim of the present work is to present a simple model for damage progression and Acoustic Emission that correctly accounts for energy dissipation due to the formation of micro-cracks and the creation of surfaces in a material undergoing external loading, and thus to derive the scaling behaviour observed in experiments. To do this, energy balance considerations are included in a Fibre Bundle Model approach. The model predictions are first illustrated in a uniaxial test under quasistatic loading conditions. Numerical results are then compared to experimental data relative to tests on masonry elements of various sizes subjected compression. The scaling properties of Acoustic Emission under the chosen energy balance assumptions is analyzed and compared to previous numerical and experimental results in the literature. Power-law scaling behaviour is found with respect to specimen dimensions.
2008
45
5856
5866
Acoustic Emission; Algorithms; Concrete; Fracture; Energy balance; Modelling; Numerical methods
F.Bosia; N.Pugno; G. Lacidogna; A.Carpinteri
File in questo prodotto:
File Dimensione Formato  
2008_Bosia-IJSS.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 468.9 kB
Formato Adobe PDF
468.9 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/48993
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 20
social impact