We calculate the antiproton flux due to relic neutralino annihilations, in a two-dimensional diffusion model compatible with stable and radioactive cosmic ray nuclei. We find that the uncertainty in the primary flux induced by the propagation parameters alone is about two orders of magnitude at low energies, and it is mainly determined by the lack of knowledge on the thickness of the diffusive halo. On the contrary, different dark matter density profiles do not significantly alter the flux: a NFW distribution produces fluxes which are at most 20% higher than an isothermal sphere. The most conservative choice for propagation parameters and dark matter distribution normalization, together with current data on cosmic antiprotons, cannot lead to any definitive constraint on the supersymmetric parameter space, neither in a low-energy effective MSSM, or in a minimal SUGRA scheme. However, if the best choice for propagation parameters - corresponding to a diffusive halo of L=4 kpc - is adopted, some supersymmetric configurations with the neutralino mass of about 100 GeV should be considered as excluded. An enhancement flux factor - due for instance to a clumpy dark halo or to a higher local dark matter density - would imply a more severe cut on the supersymmetric parameters.

Antiprotons in cosmic rays from neutralino annihilation

DONATO, Fiorenza;FORNENGO, Nicolao;
2004-01-01

Abstract

We calculate the antiproton flux due to relic neutralino annihilations, in a two-dimensional diffusion model compatible with stable and radioactive cosmic ray nuclei. We find that the uncertainty in the primary flux induced by the propagation parameters alone is about two orders of magnitude at low energies, and it is mainly determined by the lack of knowledge on the thickness of the diffusive halo. On the contrary, different dark matter density profiles do not significantly alter the flux: a NFW distribution produces fluxes which are at most 20% higher than an isothermal sphere. The most conservative choice for propagation parameters and dark matter distribution normalization, together with current data on cosmic antiprotons, cannot lead to any definitive constraint on the supersymmetric parameter space, neither in a low-energy effective MSSM, or in a minimal SUGRA scheme. However, if the best choice for propagation parameters - corresponding to a diffusive halo of L=4 kpc - is adopted, some supersymmetric configurations with the neutralino mass of about 100 GeV should be considered as excluded. An enhancement flux factor - due for instance to a clumpy dark halo or to a higher local dark matter density - would imply a more severe cut on the supersymmetric parameters.
2004
69
063501-1
063501-19
http://arxiv.org/abs/astro-ph/0306207
F. DONATO; N. FORNENGO; D. MAURIN; P. SALATI; R. TAILLET
File in questo prodotto:
File Dimensione Formato  
PhysRevD_69_063501.pdf

Accesso riservato

Tipo di file: PDF EDITORIALE
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/5142
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 342
  • ???jsp.display-item.citation.isi??? 304
social impact