In this paper a new method for segmenting medical images is presented, the multiresolution diffused expectation-maximization (MDEM) algorithm. The algorithm operates within a multiscale framework, thus taking advantage of the fact that objects/regions to be segmented usually reside at different scales. At each scale segmentation is carried out via the expectation-maximization algorithm, coupled with anisotropic diffusion on classes, in order to account for the spatial dependencies among pixels. This new approach is validated via experiments on a variety of medical images and its performance is compared with more standard methods. (c) 2005 Elsevier Ltd. All rights reserved.

A multiresolution diffused expectation-maximization algorithm for medical image segmentation

FERRARO, Mario
2007-01-01

Abstract

In this paper a new method for segmenting medical images is presented, the multiresolution diffused expectation-maximization (MDEM) algorithm. The algorithm operates within a multiscale framework, thus taking advantage of the fact that objects/regions to be segmented usually reside at different scales. At each scale segmentation is carried out via the expectation-maximization algorithm, coupled with anisotropic diffusion on classes, in order to account for the spatial dependencies among pixels. This new approach is validated via experiments on a variety of medical images and its performance is compared with more standard methods. (c) 2005 Elsevier Ltd. All rights reserved.
2007
Inglese
Sì, ma tipo non specificato
37
83
96
13
262
4
G. Boccignone; P. Napoletano; V. Caggiano; M. Ferraro
info:eu-repo/semantics/article
none
03-CONTRIBUTO IN RIVISTA::03A-Articolo su Rivista
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/53132
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 15
social impact