In a recent study we have explored TfR2 expression in a panel of cancer cell lines and we observed that about 40% of these cell lines clearly express TfR2. Taking advantage of this observation and considering the frequent overexpression of c-Myc in cancer cells we have explored the existence of a possible relationship between c-Myc and TfR2 in these cell lines. Our results provided evidence that TfR2(+) cell lines express low c-Myc levels and low TfR1 levels, while TfR2(-) cell lines express high c-Myc and TfR1 levels. Using the erythroleukemic K562 TfR2(+) cells as a model, we observed that agents that enhance c-Myc expression, such as iron, determine a decrease of TfR2 expression, while molecules that induce a decreased c-Myc expression, such as the iron chelator desferoxamine or the kinase inhibitor ST 1571, induce an enhanced TfR2 expression. On the other hand, we have evaluated a possible effect of hypoxia and nitric oxide on TfR2 expression in erythroleukemia K526 and hepatoma HepG2 cells, providing evidence that: (i) agents inducing cellular hypoxia, such as CoCl(2), elicited a marked upmodulation of TfR1, but a downmodulation of TfR2 expression; (ii) NO(+) donors, such as sodium nitroprusside (SNP), induced a moderate decrease of TfR1, associated with a marked decline of TfR2 expression; (iii) NO donors, such as S-Nitroso-N-Acetylpenicillamine (SNAP), induced a clear increase of TfR1, associated with a moderate upmodulation of TfR2 expression. The ensemble of these observations suggests that in cancer cell lines TfR2 expression can be modulated through stimuli similar to those known to act on TfR1 and these findings may have important implications for our understanding of the role of TfR2 in the regulation of iron homeostasis

Regulation of transferrin receptor 2 in human cancer cell lines

DEAGLIO, Silvia;MALAVASI, Fabio;
2009-01-01

Abstract

In a recent study we have explored TfR2 expression in a panel of cancer cell lines and we observed that about 40% of these cell lines clearly express TfR2. Taking advantage of this observation and considering the frequent overexpression of c-Myc in cancer cells we have explored the existence of a possible relationship between c-Myc and TfR2 in these cell lines. Our results provided evidence that TfR2(+) cell lines express low c-Myc levels and low TfR1 levels, while TfR2(-) cell lines express high c-Myc and TfR1 levels. Using the erythroleukemic K562 TfR2(+) cells as a model, we observed that agents that enhance c-Myc expression, such as iron, determine a decrease of TfR2 expression, while molecules that induce a decreased c-Myc expression, such as the iron chelator desferoxamine or the kinase inhibitor ST 1571, induce an enhanced TfR2 expression. On the other hand, we have evaluated a possible effect of hypoxia and nitric oxide on TfR2 expression in erythroleukemia K526 and hepatoma HepG2 cells, providing evidence that: (i) agents inducing cellular hypoxia, such as CoCl(2), elicited a marked upmodulation of TfR1, but a downmodulation of TfR2 expression; (ii) NO(+) donors, such as sodium nitroprusside (SNP), induced a moderate decrease of TfR1, associated with a marked decline of TfR2 expression; (iii) NO donors, such as S-Nitroso-N-Acetylpenicillamine (SNAP), induced a clear increase of TfR1, associated with a moderate upmodulation of TfR2 expression. The ensemble of these observations suggests that in cancer cell lines TfR2 expression can be modulated through stimuli similar to those known to act on TfR1 and these findings may have important implications for our understanding of the role of TfR2 in the regulation of iron homeostasis
2009
42
5
13
http://www.sciencedirect.com/science?_ob=MImg&_imagekey=B6WBV-4TY8WGF-1-H&_cdi=6720&_user=525216&_orig=search&_coverDate=11%2F18%2F2008&_sk=999999999&view=c&wchp=dGLbVlW-zSkzS&md5=f704223247e2ca131f3d972f5f1ebe7f&ie=/sdarticle.pdf
Transferrin; Transferrin receptor; Cancer; c-myc; Gene expression
Calzolari A; Finisguerra V; Oliviero I; Deaglio S; Mariani G; Malavasi F; Testa U.
File in questo prodotto:
File Dimensione Formato  
PDF EDITORIALE 340040.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/55994
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact