In the complex neurovascular control of the orofacial area, the only vasoconstrictor action is mediated by the sympathetic nervous system; however, its functional role is still unclear as little evidence exists of vasoconstrictor responses to physiological stimuli in both animal and human models. Aim of the present study was to investigate, orofacial vascular responses to acute stress in conscious rabbits. Twenty rabbits, implanted with chronic perivascular flow probes on the facial artery and with a telemetric probe for arterial blood pressure, were subjected to different alerting/stress stimuli, i.e., noise, taps on the rabbit's box, air jet, noxious cutaneous stimuli. Smaller groups of animal also underwent electromyographic (EMG) activity recording from the masseter muscle, unilateral section of the cervical sympathetic nerve (n=8), and alpha-adrenergic blockade with phentolamine (n=6). On average, all stressors evoked a pressor response accompanied by variable changes in heart rate and induced a marked, short-latency reduction in facial artery blood flow, corresponding to a decrease of 37-50% in vascular conductance of the facial artery. Local sympathetic denervation abolished the short-latency (<15s) vasoconstrictor response to all stressors and attenuated the late (>15s) phase of the long-lasting response to the air jet. All vasoconstrictor effects were blocked by phentolamine. Increases in blood flow were observed only in concomitance with masseter EMG activity either during masticatory activity or in the form of brief occasional spontaneous contractions. This study provides evidence of an effective vasoconstrictor control by the sympathetic system in the orofacial area under stress conditions.

Acute stress reduces blood flow in the orofacial area, in conscious rabbits

ROATTA, Silvestro;MOHAMMED, MAZHER;PASSATORE, Magda
2009-01-01

Abstract

In the complex neurovascular control of the orofacial area, the only vasoconstrictor action is mediated by the sympathetic nervous system; however, its functional role is still unclear as little evidence exists of vasoconstrictor responses to physiological stimuli in both animal and human models. Aim of the present study was to investigate, orofacial vascular responses to acute stress in conscious rabbits. Twenty rabbits, implanted with chronic perivascular flow probes on the facial artery and with a telemetric probe for arterial blood pressure, were subjected to different alerting/stress stimuli, i.e., noise, taps on the rabbit's box, air jet, noxious cutaneous stimuli. Smaller groups of animal also underwent electromyographic (EMG) activity recording from the masseter muscle, unilateral section of the cervical sympathetic nerve (n=8), and alpha-adrenergic blockade with phentolamine (n=6). On average, all stressors evoked a pressor response accompanied by variable changes in heart rate and induced a marked, short-latency reduction in facial artery blood flow, corresponding to a decrease of 37-50% in vascular conductance of the facial artery. Local sympathetic denervation abolished the short-latency (<15s) vasoconstrictor response to all stressors and attenuated the late (>15s) phase of the long-lasting response to the air jet. All vasoconstrictor effects were blocked by phentolamine. Increases in blood flow were observed only in concomitance with masseter EMG activity either during masticatory activity or in the form of brief occasional spontaneous contractions. This study provides evidence of an effective vasoconstrictor control by the sympathetic system in the orofacial area under stress conditions.
2009
50
380
388
Roatta S; Mohammed M; Passatore M
File in questo prodotto:
File Dimensione Formato  
2009 Roatta et al AOB Stress on facial artery blood flow.pdf

Accesso riservato

Tipo di file: POSTPRINT (VERSIONE FINALE DELL’AUTORE)
Dimensione 775.17 kB
Formato Adobe PDF
775.17 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/2318/56347
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact